General Information

Introduction
Danfoss a world leader in hydraulic power systems has developed a family of axial piston motors.

Description
Danfoss axial pistons fixed displacement motors are of swash plate design with preset displacement suitable for hydrostatic transmissions with closed loop circuit.
The output speed is proportional to the motor's input flow.
The output torque is proportional to the differential pressure applied to the main pressure ports.
The direction of motor (output) shaft rotation depends on flow input to the main pressure ports.

Danfoss axial piston fixed displacement motors are well engineered and easy to handle.
The full-length shaft with a highly efficient tapered roller bearing arrangement offers a high loading capacity for external radial forces.
High case pressures can be achieved without leakage even at the lowest temperatures by using suitable shaft seals.
Danfoss axial piston units are designed for easy servicing. Complete dismantling and reassembly can be carried out with standard hand tools, and all components or sub-assemblies are replaceable.
Axial piston fixed displacement motors of the Danfoss pattern are made by licensed producers worldwide, providing consistent service and fully inter-changeable parts.

Typical markets
• Industrial
• Mining
• Transit Mixer
• Utility Vehicles
Technical Information Axial Piston Motors Series 20

Contents

General Description
Introduction ... 2
Description ... 2
Typical markets ... 2

Sectional View
Axial piston fixed displacement motor ... 4

System Circuit Description
Pump and motor circuit description ... 5
Motor circuit schematic .. 5

Technical Specification
Technical parameters ... 6
Design ... 6
Type of mounting .. 6
Pipe connections .. 6
Direction of rotation and flow .. 6
Installation position ... 6
External drain fluid loss .. 6
Hydraulic parameters ... 7
System pressure range, input p₁ ... 7
System pressure range, output p₂ .. 7
Case pressure .. 7
Hydraulic fluid ... 7
Hydraulic fluid temperature range ... 7
Viscosity range ... 7
Filtration .. 7
Shaft load .. 7
Determination of nominal motor size ... 8

Dimensions
– Frame Size 070 and 089
Outline drawing, configuration ms ... 9
Outline drawing, basic model .. 11
Outline drawing, motor configuration am 01000 .. 11
Outline drawing, motor configuration mr ... 12
Circuit diagrams ... 13
Configuration MR ... 13
Basic model and motor configuration AM 01000 ... 13

Dimensions
– Frame Size 227 and 334
Outline drawing, configuration ms ... 14
Technical Information Axial Piston Motors Series 20

General Description

Axial piston fixed displacement motor

Sectional View
General Description

Pump and motor circuit description

Above figure shows schematically the function of a hydrostatic transmission using an axial piston variable displacement pump and a fixed displacement motor.

Motor circuit schematic

Designation:
1 = Fixed displacement motor
2 = Purge relief valve
3 = Shuttle valve
4 = High pressure relief valve

Ports:
A, B = Main pressure ports (working loop)
L1, L2 = Drain ports
MA = Gauge port for port A
MB = Gauge port for port B
M = Gauge port - charge pressure
Technical Specification

Technical parameters

Design
Axial piston motor with fixed displacement and swash plate design.

Type of mounting
SAE four bolt flanges.

Pipe connections
Main pressure ports: SAE split flange
Remaining ports: SAE O-ring boss

Direction of rotation and flow
Clockwise or counterclockwise (viewing from the output shaft).

<table>
<thead>
<tr>
<th>Direction of rotation</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise (R)</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>Counterclockwise (L)</td>
<td>Input</td>
<td>Output</td>
</tr>
</tbody>
</table>

Installation position
Optional; motor housing must be always filled with hydraulic fluid.

External drain fluid loss

![Graph depicting external drain fluid loss vs. Driveshaft speed (min⁻¹) (rpm)]
Technical Specification

Hydraulic parameters

System pressure range, input \(p_1 \)
Pressure on port A or B:

- Max. operating pressure \(\Delta p = 420 \text{ bar} \ [6092 \text{ psi}] \)
- Max. high pressure setting \(\Delta p = 460 \text{ bar} \ [6672 \text{ psi}] \)

Only with POR-valve

System pressure range, output \(p_2 \)
Normal setting for configuration MS and MR: 11.0 - 12.5 bar [160 - 181 psi] above case pressure.

Minimum: 8 bar, intermittent only

Case pressure
- Max. rated pressure = 2.5 bar [36.3 psi]
- Intermittent = 5.0 bar [72.5 psi]

Hydraulic fluid
Refer to Danfoss publications *Hydraulic Fluids and Lubricants, 520L0463* and *Experience with Biodegradable Hydraulic Fluids, 520L0465*.

Hydraulic fluid temperature range
- \(\vartheta_{\text{min}} = -40^\circ \text{C} [-40^\circ \text{F}] \)
- \(\vartheta_{\text{max}} = 95^\circ \text{C} [203^\circ \text{F}] \)

Viscosity range
- \(\nu_{\text{min}} = 7 \text{ mm}^2/\text{s} \ [49 \text{ SUS}*] \)
- \(\nu_{\text{max}} = 1000 \text{ mm}^2/\text{s} \ [4630 \text{ SUS}*] \) (intermittent cold start)

Recommended viscosity range: 12 - 60 mm²/s [66 - 278 SUS*]

SUS (Saybolt Universal Second)

Filtration
Required cleanliness level: ISO 4406-1999 Code 22/18/13 or better.
Refer to Danfoss publications *Hydraulic Fluids and Lubricants, 520L0463* and *Design Guideline for Hydraulic Fluid Cleanliness, 520L0467*.

Shaft load
The pump will accept radial and axial loads on its shaft, the maximum capacity being determined by direction and point of application of the load.
Please contact your Danfoss representative.
Technical Specification

Hydraulic parameters (continued)

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Frame size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>070</td>
</tr>
<tr>
<td>Max. displacement</td>
<td>cm³</td>
</tr>
<tr>
<td>Rated speed 1</td>
<td>min⁻¹ (rpm)</td>
</tr>
<tr>
<td>Mass moment of inertia of rotating group</td>
<td>kg m² • 10⁻³</td>
</tr>
</tbody>
</table>

¹ for higher speeds contact your Danfoss representative

Determination of nominal motor size

Unit:

Metric System:

Input flow	Qₑ = \frac{Vₑ \times n}{1000 \times \eta_v}	l/min
Output torque	Mₑ = \frac{Vₑ \times \Delta p \times \eta_m}{20 \times \pi}	Nm
Output power	Pₑ = \frac{Qₑ \times \Delta p \times \eta_t}{600}	kW
Speed	n = \frac{Qₑ \times 1000 \times \eta_v}{Vₑ}	min⁻¹ (rpm)

Inch System:

Input flow	Qₑ = \frac{Vₑ \times n}{231 \times \eta_v}	[gpm]
Output torque	Mₑ = \frac{Vₑ \times \Delta p \times \eta_m}{2 \times \pi}	[lbf•in]
Output power	Pₑ = \frac{Vₑ \times \eta_m \times \Delta p \times \eta_t}{396 000}	[hp]
Speed	n = \frac{Qₑ \times 231 \times \eta_v}{Vₑ}	(rpm)

Efficiency characteristic curves available on request.

\[Vₑ = \text{Motor displacement per revolution} \quad \text{cm}³ \quad \text{[in}³]\]
\[n = \text{Motor speed} \quad \text{min}⁻¹ \quad \text{(rpm)} \]
\[\Delta p = \text{Hydraulic pressure differential} \quad \text{bar} \quad \text{[psid]} \]
\[\eta_v = \text{Motor volumetric efficiency} \]
\[\eta_m = \text{Motor mechanical efficiency} \]
\[\eta_t = \text{Motor total efficiency} \]

\[Pₑ = \text{High pressure} \quad \text{bar} \quad \text{[psid]} \]
\[Pₑ = \text{Low pressure} \quad \text{bar} \quad \text{[psid]} \]
Dimensions

– Frame Size 070 and 089 cm³

Outline drawing, configuration MS

* Shaft spline data: spline shaft with involute spline, according to SAE handbook, 1963, class 1, fillet root side fit.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Port A and B</th>
<th>Port L₁ and L₂</th>
<th>Port M₁ and M₂</th>
<th>Port M</th>
</tr>
</thead>
<tbody>
<tr>
<td>070</td>
<td>SAE flange, size 1, SAE split flange boss, 5000 psi, 4 threads, 3/8-16 UNC-2B, 18 deep</td>
<td>7/8-14 UNF-2B, SAE straight thread, O-ring boss</td>
<td></td>
<td>7/16-20 UNF-2B, SAE straight thread, O-ring boss</td>
</tr>
</tbody>
</table>
Dimensions
– Frame Size 070 and 089 cm³

Outline drawing, configuration MS (continued)

View X (for SMF 2/070 only)

View X (for SMF 2/089 only)
Dimensions - Frame Size 070 and 089 cm³

Outline drawing, configuration MS (continued)

Dimensions

|------------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|

|------------|----------|----------|----------|----------|----------|-------|-------|-------|-------|---------------------------------|--------|-----|

Outline drawing, basic model

Outline drawing, motor configuration AM 01000

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>A [mm]</th>
<th>B [mm]</th>
<th>C [mm]</th>
<th>D [mm]</th>
<th>Weight [kg</th>
<th>lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>070</td>
<td>290 [11.417]</td>
<td>30 [1.181]</td>
<td>12 [0.472]</td>
<td>2 [0.079]</td>
<td>34 [75]</td>
<td></td>
</tr>
<tr>
<td>089</td>
<td>307 [12.087]</td>
<td>44 [1.732]</td>
<td>6 [0.236]</td>
<td>41 [90]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For further dimensions see previous pages.

Outline drawing, motor configuration AM 01000

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>A [mm]</th>
<th>Weight [kg</th>
<th>lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>070</td>
<td>315 [12.402]</td>
<td>36 [79]</td>
<td></td>
</tr>
<tr>
<td>089</td>
<td>332 [13.071]</td>
<td>43 [95]</td>
<td></td>
</tr>
</tbody>
</table>

1 Light weight and short options available on request
For further dimensions see previous pages.
Dimensions –
Frame Size 070 and 089 cm³

Outline drawing, motor configuration MR

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>A [mm]</th>
<th>B [mm]</th>
<th>Weight [kg]</th>
<th>Port Mₐ and Mₘ</th>
<th>Port M</th>
</tr>
</thead>
</table>

For further dimensions see previous pages.
Dimensions
– Frame Size 070 and 089 cm³

Circuit diagrams

Configuration MR

Basic model and motor configuration AM 01000

Designation:
1 = Fixed displacement motor
2 = Purge relief valve
3 = Shuttle valve
4 = High pressure relief valve
5 = Bypass valve

Ports:
A, B = Main pressure ports (working loop)
L₁, L₂ = Drain ports
Mₐ = Gauge port for port A
Mₖ = Gauge port for port B
M = Gauge port - charge pressure

Return from purge relief valve to motor case
Dimensions

Frame Size 227 and 334 cm³

Outline drawing, configuration MS

Dimensions

|------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|

<table>
<thead>
<tr>
<th>Frame size</th>
<th>M [mm]</th>
<th>Ø N [mm]</th>
<th>Ø O [mm]</th>
<th>Ø P [mm]</th>
<th>Ø R [mm]</th>
<th>Ø S [mm]</th>
<th>T [mm]</th>
<th>U [mm]</th>
<th>V [mm]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frame size</th>
<th>W [mm]</th>
<th>X [mm]</th>
<th>Y [mm]</th>
<th>Z [mm]</th>
<th>AA [mm]</th>
<th>BB [mm]</th>
<th>CC [mm]</th>
<th>Diameter for shaft coupling [mm]</th>
<th>Weight [kg]</th>
</tr>
</thead>
</table>

* Shaft spline data: spline shaft with involute spline, according to SAE handbook, 1963, class 1, fillet root side fit.
Dimensions
– Frame Size 227 and 334 cm³

Outline drawing, configuration MS
(continued)

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Port A and B</th>
<th>Port L₁ and L₂</th>
<th>Port M₁ and M₂</th>
<th>Port M</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>SAE flange, size 1 1/2</td>
<td>1 7/8-12 UNF-2B</td>
<td>7/16-20 UNF-2B</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td></td>
<td>SAE split flange boss</td>
<td>SAE straight thread</td>
<td>SAE straight thread</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6000 psi</td>
<td>O-ring boss</td>
<td>O-ring boss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 threads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/8-11 UNC-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 mm deep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hydraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- Open Circuit Axial Piston Pumps
- Orbital Motors
- PLUS+1® GUIDE
- Proportional Valves
- Sensors
- Steering
- Transit Mixer Drives

Local address:

Danfoss Power Solutions GmbH & Co. OHG
Krokamp 35
D-24539 Neumünster, Germany
Phone: +49 4321 871 0

Danfoss Power Solutions ApS
Nordborgvej 81
DK-6430 Nordborg, Denmark
Phone: +45 7488 2222

Danfoss Power Solutions Trading (Shanghai) Co., Ltd.
Building #22, No. 1000 Jin Hai Rd
Jin Qiao, Pudong New District
Shanghai, China 201206
Phone: +86 21 3418 5200

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.