

Directional control valves, pilot-operated, with electrical position feedback and integrated electronics (OBE)

Type 4WRLE

RE 29123

Edition: 2017-05 Replaces: 2016-06

- ▶ Size 10 ... 35
- Component series 4X
- Maximum operating pressure 350 bar
- ▶ Rated flow 60 ... 1500 ml/min

Features

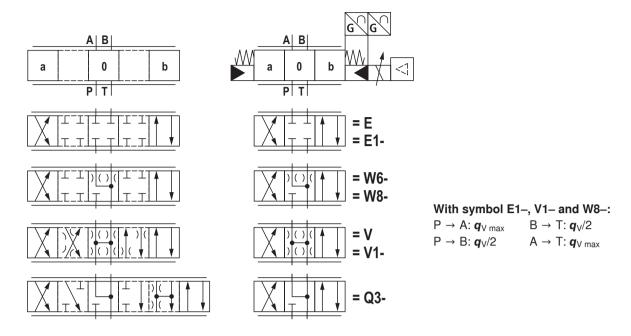
- ► Reliable proven and robust design
- Safe
 - The control spool of the pilot control valve is in the "fail safe" position when the unit is switched off
 - The control spool of the main valve is in the spring-centered central position and/or in the offset position
- ► High quality control spool and sleeve of the pilot control valve in servo quality
- Flexible suitable for position, velocity and pressure control
- Precise high response sensitivity and little hysteresis

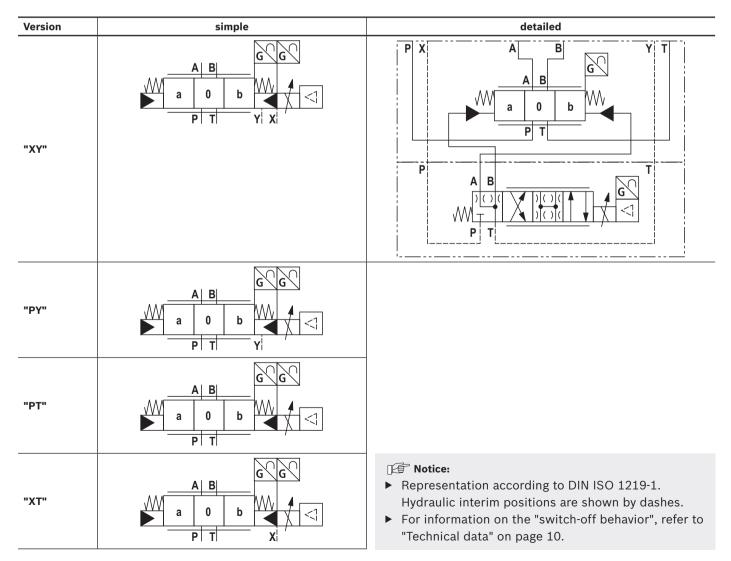
Contents

Features	1
Ordering code	2, 3
Symbols	2
Function, section	5, 6
Pilot oil supply	7, 8
Technical data	8 10
Block diagram/controller function block	11
Electrical connections and assignment	12
Characteristic curves	13 30
Dimensions	31 35
Accessories	36
Further information	36

Ordering code

01	02	03	04	05	06	07	80		09		10	1:	1		12	13	14	1 1	5	16		
4	WRL	Ε					J	- 4	4X	/				/		24				*		
01	4 main p	orts																				4
02	Direction	nal co	ntrol v	alve, p	oilot-o	perate	d															WRL
03	With inte	egrate	d elec	tronic	S																	E
04	Size 10																					10
	Size 16																					16
	Size 25																					25
	Size 27																					27
	Size 35																					35
05	Symbols	e. g.	E, E1-,	W6- e	etc.; po	ossible	e versio	n see p	page 4													
	d flow (Δp		ar/cor	ntrol e	dge)																 	
06	- Size 1 60 l/min		svmbo	ol E. E	1 W6	S W8-	. V. V1-)														60
	100 l/mi		-,	, -	_,	,	, .,	,														100
	- Size 1																					
	200 l/mi	n (onl	y symł	ool We	6- and	W8-) ¹	.)															200
	250 l/mi																				 1	250
	- Size 2		-																			
	350 l/mi	n (onl	y syml	ool We	S- and	W8-) ¹	.)															350
	400 l/mi																					400
	- Size 2	7																				
	430 l/mi	n (onl	y symł	ool We	6- and	W8-) ¹	.)															430
	600 l/mi	n (onl	y symł	ool E,	E1-, V,	V1- a	nd Q3-)															600
	- Size 3	5																				
	1000 l/n	nin (or	nly syn	nbol E	, E1-, \	V, V1-)																1000
	1200 l/n	nin (or	nly sym	nbol W	/6- and	d W8-)	1)															1200
	1500 l/n	nin (or	nly syn	nbol E	, E1-, \	V, V1-	and Q3	-)														1500
Flow	characte	ristic																			 	
07	Linear																				 	L
	Linear w									izes (on re	ques	st)								 	Р
	Progress	sive w	ith line	ear fine	e cont	rol (or	nly sym	bol Q3	-)													М
80	Overlap	jump	(openi	ng po	int 5%	with	covere	d valve	only:	symb	ols E	E, E1	-, W6	6-, W	8-)							J
09	Compon	ent se	eries 4	0 49	9 (40 .	49:	unchan	ged ins	stallati	ion a	nd m	oun	ing o	dime	nsior	ns)						4X
	material																				 	
10	NBR sea																				 	М
	FKM sea Observe		natihili [.]	tv of s	eals w	ith hy	draulic	fluid u	sed													V
Pilot	oil flow			-, -, -,	Jul 1																	
11	External	pilot	oil sun	plv. e	xterna	l pilot	oil retu	ırn													 $\overline{}$	XY
	Internal																				 +	PY
	Internal																				1	PT
	External																				 +	XT
		• • • •	-																		 	


Ordering code


01	02	03	04	05	06	07	80		09		10	11		12	13	14	15	16
1 4	WRI	F					l .I l	_	ΔX	/			/		24			*

12	Without damping plate	no code
	With damping plate	D
13	Supply voltage 24 V	24
Inter	faces of the control electronics	
14	Command value input ±10 V	A1
	Command value input 4 (12) 20 mA	F1
15	Without electronics protection membrane	no code
	With electronics protection membrane	-967
16	Further details in the plain text	*

¹⁾ Higher rated flow upon request

Symbols

Function, section: Symbol E. and W.

The valve type 4WRLE is a pilot-operated directional control valve with electrical position feedback and integrated electronics (OBE).

Set-up

The valve basically consists of 3 main assemblies:

- ► Pilot control valve (1) with control spool and sleeve, return spring, control solenoid and inductive position transducer (optional with electronics protection membrane (5) and damping plate (4))
- Main valve (2) with centering spring and position feedback
- ► Integrated control electronics (OBE) (3)

Function

When the integrated control electronics (OBE) is switched off or inactive, the control spool of the pilot control valve is spring-operated in the "fail-safe" position. The control spool of the main valve is in its spring-centered central position.

The integrated control electronics (OBE) compares the specified command value to the position actual value of the main valve control spool. In case of control deviations, the control solenoid will be activated. Due to the changed magnetic force, the pilot control spool is adjusted against the spring.

The flow which is activated via the control cross-sections leads to an adjustment of the main control spool. The stroke/control cross-section of the main control spool is regulated proportionally to the command value. The pilot oil supply in the pilot control valve is either internal via port P or external via port X. The feedback can be internal via port T or external via port Y to the tank.

Control solenoid shut-off

In case of the following errors, the control solenoids are de-energized by the integrated electronics (OBE), the pilot control spool is set to "fail-safe" position and unloads the pilot oil chambers of the main valve. Operated by the spring, the main valve control spool will move to the central position.

- ► Falling below the minimum supply voltage
- ▶ Only at interface "F1": falling below the minimum current command value of 2 mA (includes cable break of the command value line (current loop)).

Damping plate "D"

The damping plate (4) reduces the acceleration amplitudes on the on-board electronics (frequencies >300 Hz).

Use of the damping plate is not recommended for applications with mainly low-frequency excitation <300 Hz.

Electronics protection membrane "-967"

To prevent condensate formation in the housing of the integrated electronics (OBE), an electronics protection membrane (5) can be used.

Recommended for use outside industry-standard conditions with high ambient air humidity and significant cyclic temperature changes (e.g. outdoors).

Notice:

Pilot-operated 4/3-directional control valves with positive overlap are functional in controlled or regulated axes. The overlap in the de-energized state is approx. 20% of the control spool stroke.

While the electrical supply voltage is switched off, the drive may be accelerated for a short time in functional direction P to B.

Function, section: Symbol V and V1-

The valve type 4WRLE is a pilot-operated directional control valve with electrical position feedback and integrated electronics (OBE).

Set-up

The valve basically consists of 3 main assemblies:

- ▶ Pilot control valve (1) with control spool and sleeve, return spring, control solenoid and inductive position transducer (optional with electronics protection membrane (5) and damping plate (4))
- Main valve (2) with centering spring and position feedback
- ► Integrated control electronics (OBE) (3)

Function

When the integrated control electronics (OBE) is switched off or inactive, the control spool of the pilot control valve is spring-operated in the "fail-safe" position. The control spool of the main valve is in its spring-centered offset position at approx. 6% of the stroke in direction P to B/A to T. The integrated control electronics (OBE) compares the specified command value to the position actual value of the main valve control spool. In case of control deviations, the control solenoid will be activated. Due to the changed magnetic force, the pilot control spool is adjusted against the spring.

The flow which is activated via the control cross-sections leads to an adjustment of the main control spool. The stroke/control cross-section of the main control spool is regulated proportionally to the command value. In case of a command value presetting of 0 V, the electronics adjust the control spool of the main valve to central position. The pilot oil supply in the pilot control valve is either internal via port P or external via port X. The feedback can be internal via port T or external via port Y to the tank.

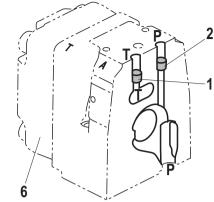
Control solenoid shut-off

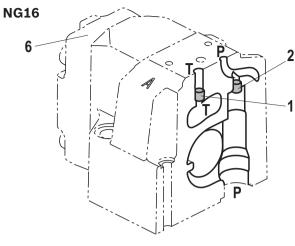
In case of the following errors, the control solenoids are de-energized by the integrated electronics (OBE), the pilot control spool is set to "fail-safe" position and unloads the pilot oil chambers of the main valve. Operated by the spring, the main valve control spool will move to the offset position (approx. $6\% P \rightarrow B/A \rightarrow T$).

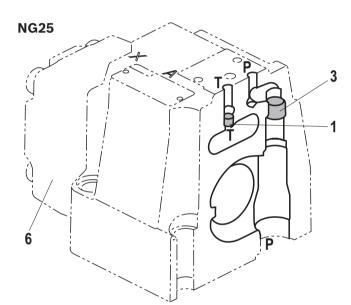
- ► Falling below the minimum supply voltage
- ▶ Only at interface "F1": falling below the minimum current command value of 2 mA (includes cable break of the command value line (current loop)).

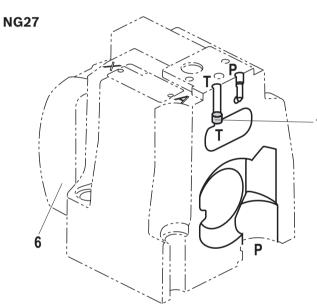
Damping plate "D" and electronics protection membrane "-967"

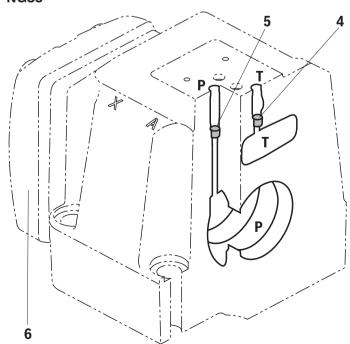
See page 5.


3 A B T A


M Notice:


Pilot-operated 4/3 directional control valves are only functional in the active control loop and do not have a locking basic position when deactivated. Consequently "external isolator valves" are required in many applications and must be taken into account regarding the switch-on/switch-off order. While the electrical supply voltage is switched off, the drive may be accelerated for a short time in functional direction P to B.


Pilot oil supply (schematic illustration)



NG35

- 1 Plug screw M6 according to DIN 906, wrench size 3 pilot oil return
- 2 Plug screw M6 according to DIN 906, wrench size 3 pilot oil supply
- **3** Plug screw M12 x 1.5 according DIN 906, wrench size 6 pilot oil supply
- 4 Plug screw 1/16-27 NPTF, wrench size 4 – pilot oil return
- **5** Plug screw 1/16-27 NPTF, wrench size 4 pilot oil supply
- 6 Housing cover main stage (position transducer side)

Pilot oil supply

external: 2, 3, 5 closed internal: 2, 3, 5 open

Pilot oil return

external: **1, 4** closed internal: **1, 4** open

Further explanations on page 8.

Pilot oil supply

Version "XY" External pilot oil supply External pilot oil return

In this version, the pilot oil is supplied from a separate control circuit (external).

The pilot oil return is not directed into channel T of the main valve, but is separately directed to the tank via port Y (external).

Version "PY" Internal pilot oil supply External pilot oil return

With this version, the pilot oil is supplied from channel P of the main valve (internal).

The pilot oil return is not directed into channel T of the main valve, but is separately directed to the tank via port Y (external).

In the subplate, port X is to be closed.

Version "PT" Internal pilot oil supply Internal pilot oil return

With this version, the pilot oil is supplied from channel P of the main valve (internal).

The pilot oil is directly returned to channel T of the main valve (internal).

In the subplate, ports X and Y are to be closed.

Version "XT" External pilot oil supply Internal pilot oil return

In this version, the pilot oil is supplied from a separate control circuit (external).

The pilot oil is directly returned to channel T of the main valve (internal).

In the subplate, port Y is to be closed.

Technical data

(For applications outside these parameters, please consult us!)

general		_			_							
Size		NG	10	16	25	27	35					
Installation position			Any									
Ambient temperature ran	nge	°C	C –20 +60									
Maximum storage time		Years	1 -	age conditions 07600-B)	ns are observe	ed; refer to th	e operating					
Sine test according to	► Without damping plate		10 2000 Hz / maximum of 10 g / 10 cycles / 3 axes									
DIN EN 60068-2-6	► With damping plate ¹)		10 2000 Hz / maximum of 10 g / 10 cycles / 3 axes									
Noise test according to	► Without damping plate		20 2000 F	lz / 10 g _{RMS} /	30 g peak / 3	0 min. / 3 axe	es					
DIN EN 60068-2-64	► With damping plate ¹)		20 2000 F	lz / 10 g _{RMS} /	30 g peak / 24	4 h / 3 axes						
Transport shock according	► Without damping plate		15 g / 11 ms / 3 shocks / 3 axes									
to DIN EN 60068-2-27	► With damping plate ¹)		15 g / 11 ms / 3 shocks / 3 axes									
Shock according to DIN EN 60068-2-27	► With damping plate ¹)		35 g / 6 ms / 1000 shocks / 3 axes									
Weight		kg	9	12	19	21	80					
Maximum relative humidi	ty (no condensation)	%	95									
Maximum solenoid surfac	ce temperature	°C	PC 120 (individual operation)									
MTTF _d value according to	EN ISO 13849	Years	ars 75 (for further details see data sheet 08012)									

Not recommended for applications with mainly low-frequency excitation < 300 Hz

Technical data

(For applications outside these parameters, please consult us!)

hydraulic							,				,	
Size		NG	1	.0	1	6	2	5	2	27	3	5
Maximum operating	► Port A, B, P											
pressure	 External pilot oil supply 	bar			3	50			2	70	3	50
	– Pilot oil supply internal	bar			28	30			270		28	80
	► Port X	bar			28	30			270		28	80
	► Ports T, Y	bar	par 250				210		2	50		
Minimum pilot pressure	pilot control valve)	bar	10							•		
Maximum flow		l/min	300		800		12	50	18	350	47	'00
Rated flow ($\Delta p = 5 \text{ bar/c}$	ontrol edge) ²⁾	l/min	60/	100	200/250		350	/400	430	/600	'	/1200/ 600
Pilot oil flow 3)	► Symbol E, W	l/min	2.4			.5		7	.5		2	!3
	► Symbol V, Q3-	l/min	4	.5	11	5		2	22		2	19
Maximum leakage flow	► Symbol E, E1-											
(inlet pressure 100 bar)	- Main valve	I/min	0.	0.06		0.13		0.	17		0.	61
	Main valve + pilot control valve	l/min	0.	14	0.28			0.	0.42		1.01	
	► Symbol W6-, W8-											
	- Main valve	l/min	0.	12	0.	26		0.	35		1.23	
	- Main valve + pilot control valve	l/min	0.2 0.41			0	.6		1.	63		
Maximum zero flow	► Symbol V, V1-											
(inlet pressure 100 bar)	- Main valve	l/min	1	.7	2.3		2	.8	3	.3	7	.2
	Main valve + pilot control valve	l/min	1.	85	2.6		3.2		2 3.		3.7 7.	
	► Symbol Q3-											
	- Main valve	l/min	0	.4	1	.6	1	.8	2	.2	1	.6
	Main valve + pilot control valve	l/min	0.	55	1	.9	2	.2	2	.6	2.	05
Flow unloading central p	osition Δ p = 5 bar/control edge		A→T	В→Т	A→T	В→Т	A→T	В→Т	A→T	В→Т	A→T	В→Т
	► Symbol W6-	l/min	2.8	2.8	4	4	6	6	6	6	25	25
	► Symbol W8-	l/min	2.8	1.4	4	2	6	3	6	3	25	12.5
Pilot oil volume	0 100%	cm ³	1	.3	2	.9	6	.8	6	.8	33	3.2
Hydraulic fluid			See ta	able be	low							
Viscosity range	mm²/s	30	45									
	► maximum admissible	mm²/s	20	380								
Hydraulic fluid temperatu	ure range (flown-through)	°C	-20	. +70								
Maximum admissible deg cleanliness class accordi	gree of contamination of the hydraulic ng to ISO 4406 (c)	fluid	Class	18/16/	/13 4)							

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet	
Mineral oils		HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220	
Bio-degradable	► Insoluble in water	HETG	NBR, FKM	ISO 15380	90221	
		HEES	FKM			
	► Soluble in water	HEPG	FKM	ISO 15380		
Flame-resistant	► Water-free	HFDU, HFDR	FKM	ISO 12922	90222	
	► Containing water	HFC (Fuchs Hydrotherm 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922	90223	

Important information on hydraulic fluids:

- ► For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us!
- ► There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- ▶ The ignition temperature of the hydraulic fluid used must be 40 K higher than the maximum solenoid surface temperature.

► Flame-resistant – containing water:

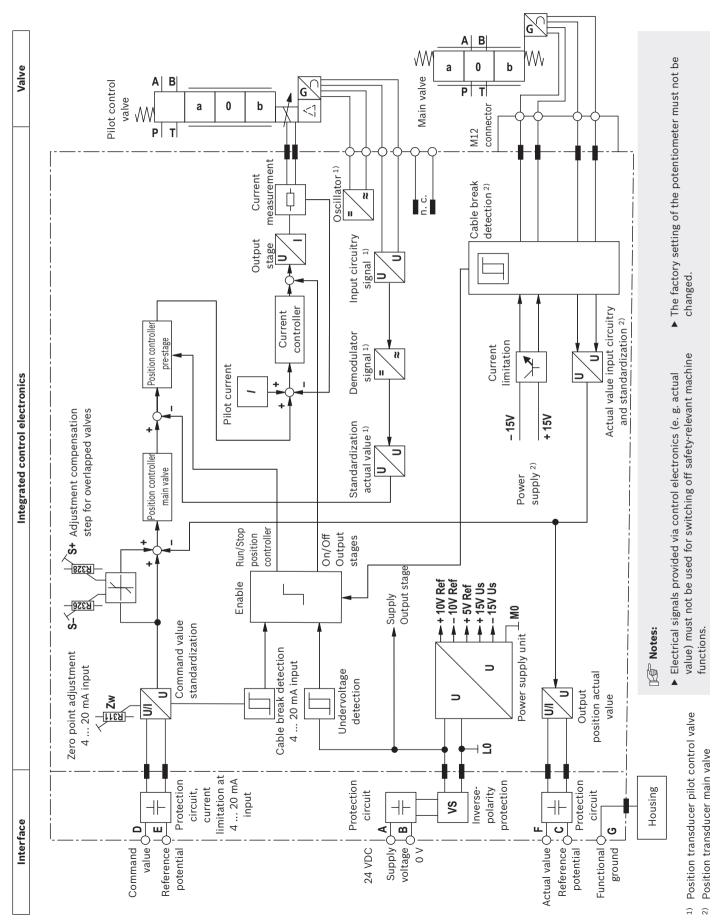
- Maximum operating pressure 210 bar
- Maximum pressure differential per control edge 175 bar
- Pressure pre-loading at the tank port >20% of the pressure differential, otherwise increased cavitation erosion
- Life cycle as compared to operation with mineral oil HL, HLP $50 \ \dots \ 100\%$
- Maximum hydraulic fluid temperature 50 °C

Technical data

(For applications outside these parameters, please consult us!)

2) Flow for deviating **Ap** (control edge):

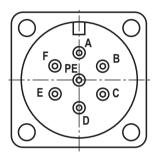
$$q_{x} = q_{Vnom} \times \sqrt{\frac{\Delta p_{x}}{5}}$$


3) At port X and Y with stepped input signal from 0 ... 100% (pilot pressure 100 bar) 4) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and simultaneously increases the life cycle of the components.

Available filters can be found at www.boschrexroth.com/filter.

static / dynamic											
Size		NG	10	16	25	27	35				
Hysteresis		%	< 0.1								
Response sensitivity		%	< 0.05								
Range of inversion		%	< 0.08								
Manufacturing tolerance q _{Vma}	x	%	≤ 10								
Actuating time for 0 100% at X = 100 bar	► Symbol E, E1-, W6-, W8-	ms	40	85	80	80	100				
Switch-off behavior (after electrical shut-off)	► Symbol E, E1-, W6-, W8-		Pilot control valve in fail-safe position, main valve moves to overlapped spring-centered central position								
	► Symbol V, V1-		Pilot control valve in fail-safe position, main valve moves to spring-centered "offset position" (approx. 6% , $P \rightarrow B/A \rightarrow T$)								
	► Symbol Q3		Pilot control valve in fail-safe position, main valve moves to spring-centered "offset position" (P blocked, A/B to port T ope								
Temperature drift (temperatu	re range 20 °C 80 °C)	%/10 °C	Zero shift <	0.25							
Zero compensation			Set in the plant to ±1%								

electrical, integrated electronics (OBE)		
Relative duty cycle	%	100 (continuous operation)
Protection class according to EN 60529		IP 65 with mounted and locked plug-in connectors
Supply voltage	VDC	24
► Terminal A	VDC	min. 19 / max. 36
► Terminal B	VDC	0
Maximum admissible residual ripple	Vpp	2.5
Maximum power consumption	VA	40
Fuse protection, external	A _T	2.5 (time-lag)
Input, version "A1"		Differential amplifier, $\mathbf{R}_{\rm i}$ = 100 k Ω
► Terminal D (U _E)	VDC	0 ±10
► Terminal E	VDC	0
Input, version "F1"		Load, R _{sh} = 200 Ω
► Terminal D (<i>I</i> _{D-E})	mA	4 20
► Terminal E (I _{D-E})		Current loop I _{D-E} feedback
Maximum voltage of the differential inputs against 0 V		$D \rightarrow B; E \rightarrow B \text{ (max. 18 V)}$
Test signal, version "A1"		LVDT
► Terminal F (U _{Test})	V	0 ±10
► Terminal C		Reference 0 V
Test signal, version "F1"		LVDT signal 4 20 mA on external load 200 500 Ω maximum
► Terminal F (I _{F-C})	mA	4 20
► Terminal C (I _{F-C})		Current loop I _{F-C} feedback
Functional ground and screening		See page 12 (EMC-compliant installation)
Adjustment		Calibrated in the plant, see valve characteristic curves
		page 13 30
Conformity		CE according to EMC Directive 2014/30/EU
		tested according toEN 61000-6-2 and EN 61000-6-3

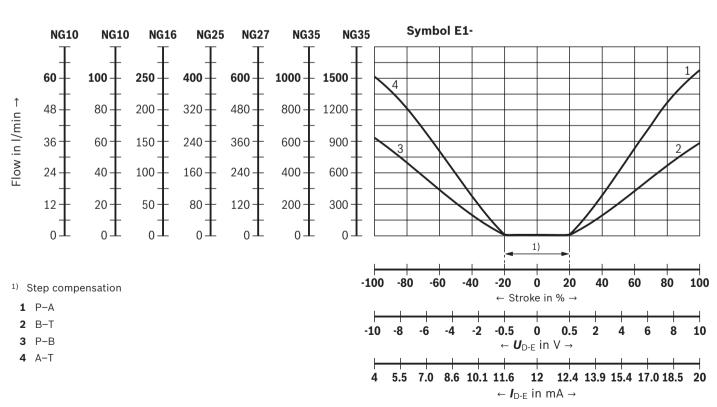

Block diagram/controller function block

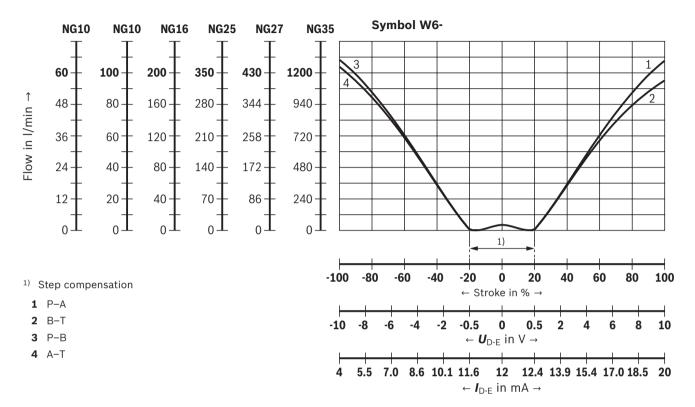
Electrical connections and assignment

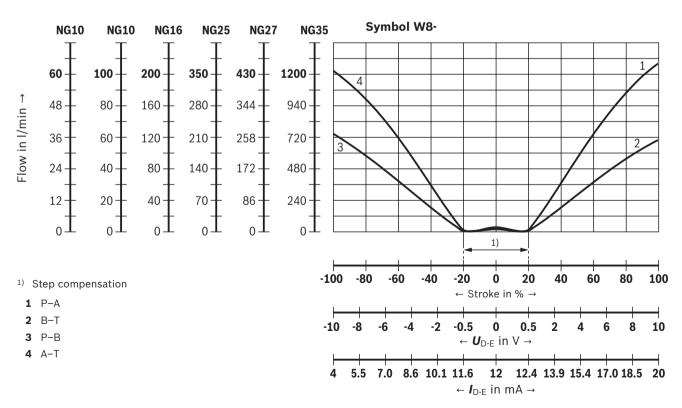
Connector pin assignment

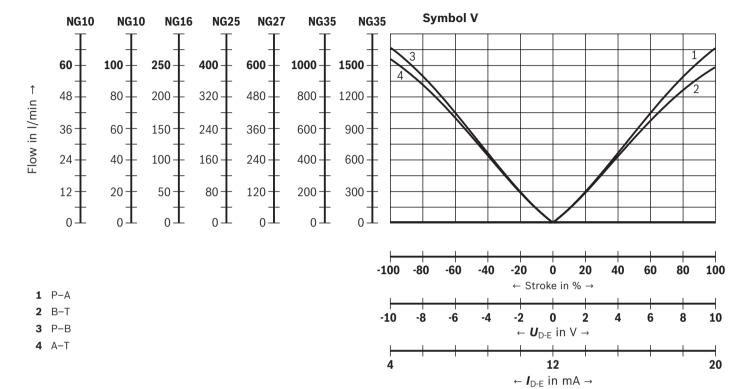
Pin	Signal	Assignment interface A1	Assignment interface F1						
Α	Cumply valtage	24 VD0	C						
В	Supply voltage	0 V							
С	Reference potential actual value	Reference potential actual value - pin F							
D	Differential emplifier input	Command value ±10 V	Command value 4 20 mA						
Е	Differential amplifier input	Reference potential com	mand value - pin D						
F	Measuring output (actual value)	Actual value ±10 V	Actual value 4 20 mA						
PE		Functional ground (directly connected to the valve housing)							

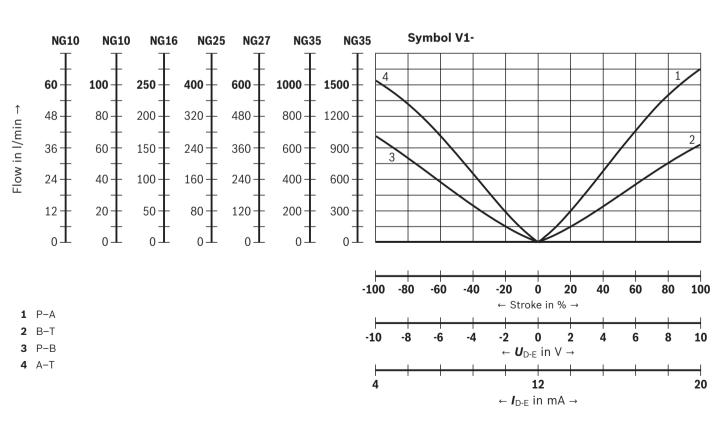


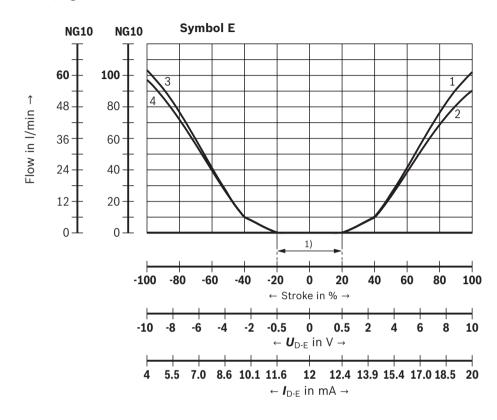

Command value:	▶ Positive command value (0 10 V or 12 20 mA on D and reference potential on E cause flow from P \rightarrow A and B \rightarrow T.							
	▶ Negative command value (0 -10 V or 12 4 mA) at D and reference potential at E cause flow from P \rightarrow B and A \rightarrow T.							
Connection cable	▶ Up to 20 m cable length type LiYCY 7 x 0.75 mm²							
(recommendation):	▶ Up to 40 m cable length type LiYCY 7 x 1.0 mm²							
	 EMC-compliant installation: Apply screening to both line ends Use metal mating connector (see page 36) Alternatively up to 30 m cable length admissible Apply screening on supply side Plastic mating connector (see page 36) can be used 							


Mating connectors, separate order, see page 36 and data sheet 08006.

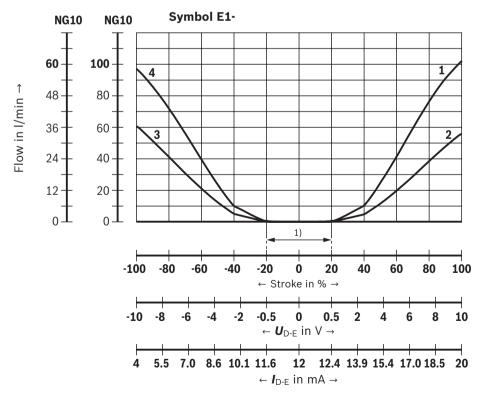

Characteristic curves: Flow characteristic "L" (valid for HLP46, θ_{Oil} = 40 ±5 °C; Δp = 5 bar/control edge)



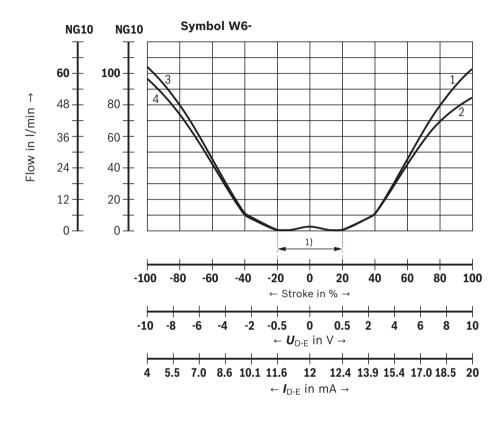

Characteristic curves: Flow characteristic "L" (valid for HLP46, ϑ_{Oil} = 40 ±5 °C; Δp = 5 bar/control edge)

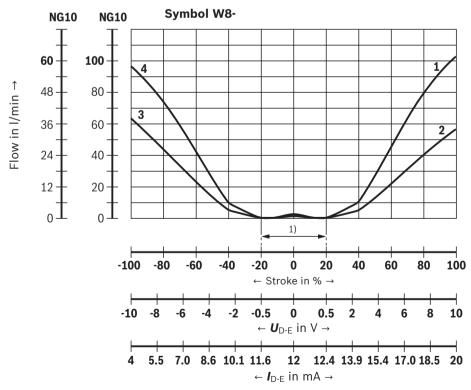

Characteristic curves: Flow characteristic "L" (valid for HLP46, ϑ_{oil} = 40 ±5 °C; Δp = 5 bar/control edge)

Characteristic curves: Flow characteristic "P" (valid for HLP46, **θ**_{Oil} = 40 ±5 °C; **Δp** = 5 bar/control edge)


Flow/signal function

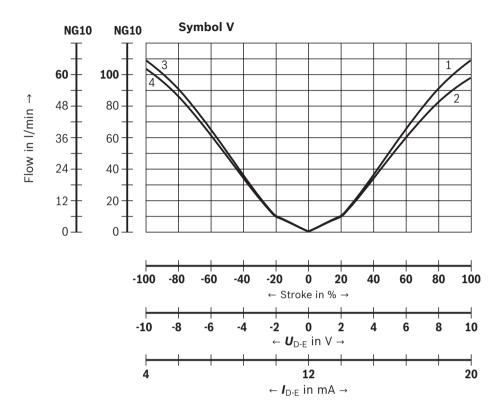
1) Step compensation

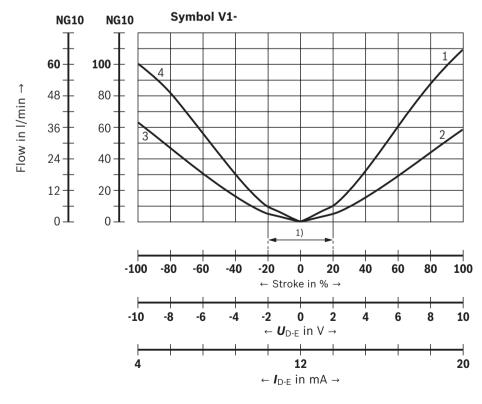

- **2** B-T
- **3** P-B
- **4** A-T


1) Step compensation

- **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

Characteristic curves: Flow characteristic "P" (valid for HLP46, ϑ_{oil} = 40 ±5 °C; Δp = 5 bar/control edge)

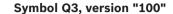

- 1) Step compensation
 - **1** P-A
 - **2** B-T
 - **3** P-B
 - **4** A-T

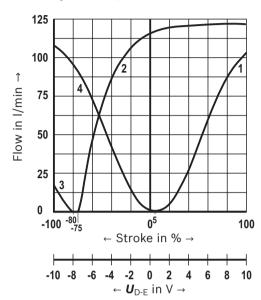


- 1) Step compensation
 - **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

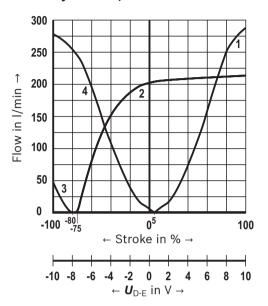
Characteristic curves: Flow characteristic "P" (valid for HLP46, θ_{oil} = 40 ±5 °C; **Δp** = 5 bar/control edge)

Flow/signal function

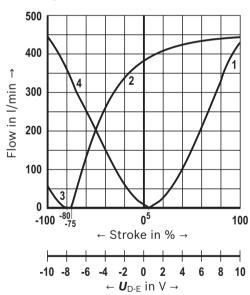

P-A
 B-T
 P-B
 A-T

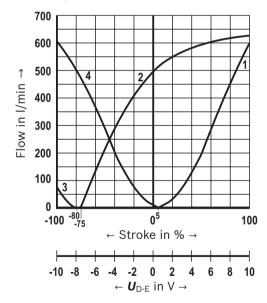

P-A
 B-T

3 P-B4 A-T


Characteristic curves: Flow characteristic "M" (valid for HLP46, θ_{oil} = 40 ±5 °C; **Δp** = 5 bar/control edge)

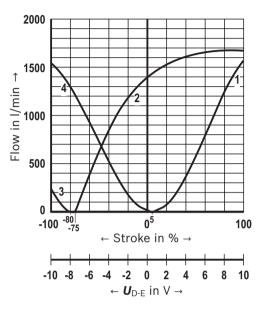
Flow/signal function




Symbol Q3, version "250"

Symbol Q3, version "400"

Symbol Q3, version "600"

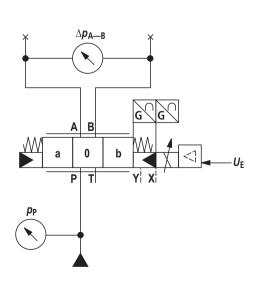


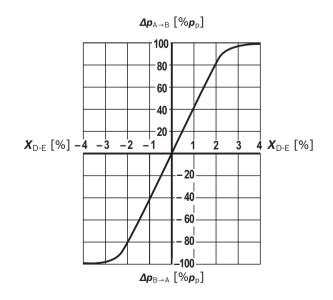
- **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

Characteristic curves: Flow characteristic "M" (valid for HLP46, θ_{oil} = 40 ±5 °C; **Δp** = 5 bar/control edge)

Flow/signal function

Symbol Q3, version "1500"

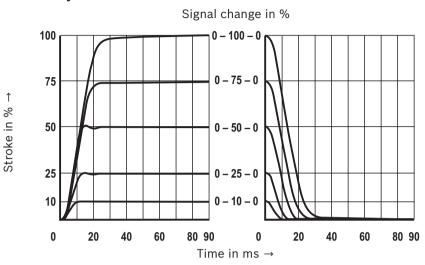



P-A
 B-T
 P-B
 A-T

Characteristic curves

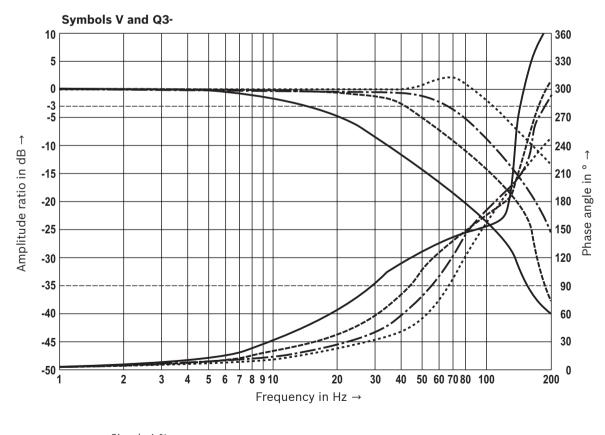
(measured with HLP46, θ_{oil} = 40 ±5 °C)

Pressure/signal characteristic curve



Characteristic curves: Size 10

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

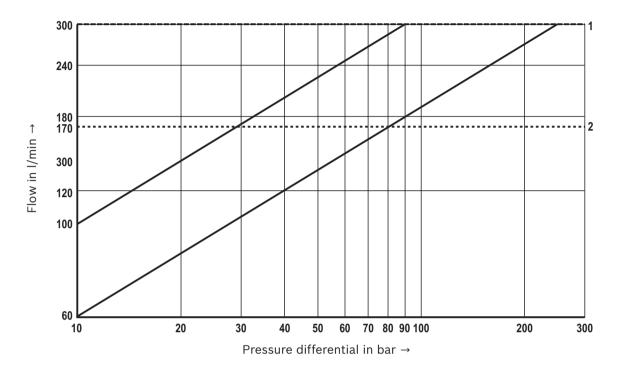

Transition function with stepped electric input signals

Symbols V and Q3-

- ▶ Pilot control valve, port X = 100 bar
- ► Main valve, port P = 10 bar

Frequency response characteristic curves

••••• Signal ±1 %

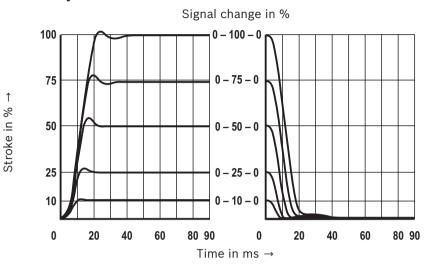

—-- Signal ±5%

---- Signal ±25%

Signal ±100%

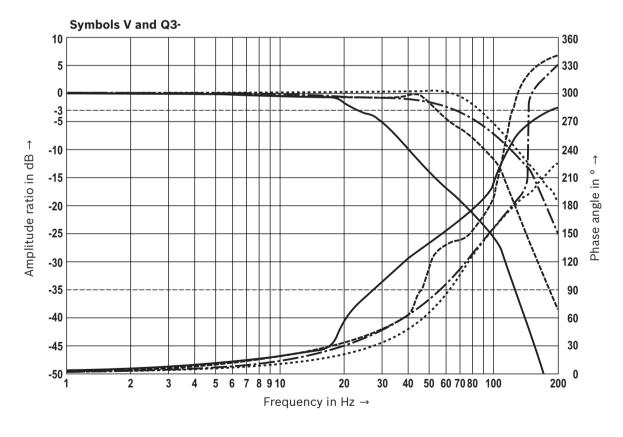
Characteristic curves: Size 10 (valid for HLP46, ϑ_{oil} = 40 ±5 °C)

Flow/load function with maximum valve opening (with maximum valve opening; tolerance ± 10%)


- 1 Maximum admissible flow
- 2 Recommended flow (flow velocity 30 m/s)

Characteristic curves: Size 16

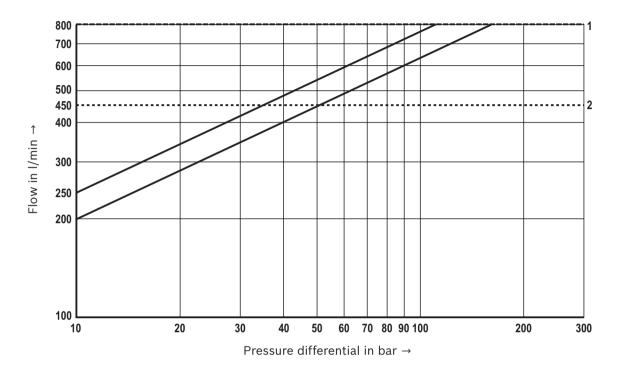
(measured with HLP46, ϑ_{oil} = 40 ±5 °C)


Transition function with stepped electric input signals

Symbols V and Q3-

- ► Pilot control valve, port X = 100 bar
- ► Main valve, port P = 10 bar

Frequency response characteristic curves

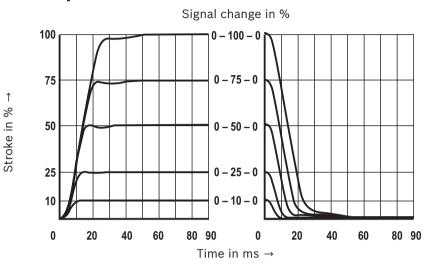

Signal ±1 %Signal ±5%

---- Signal ±25%

Signal ±100%

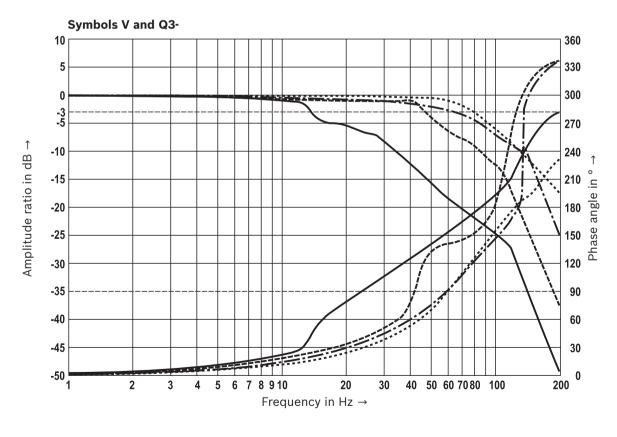
Characteristic curves: Size 16 (valid for HLP46, ϑ_{oil} = 40 ±5 °C)

Flow/load function with maximum valve opening (with maximum valve opening; tolerance ± 10%)


- 1 Maximum admissible flow
- 2 Recommended flow (flow velocity 30 m/s)

Characteristic curves: Size 25

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

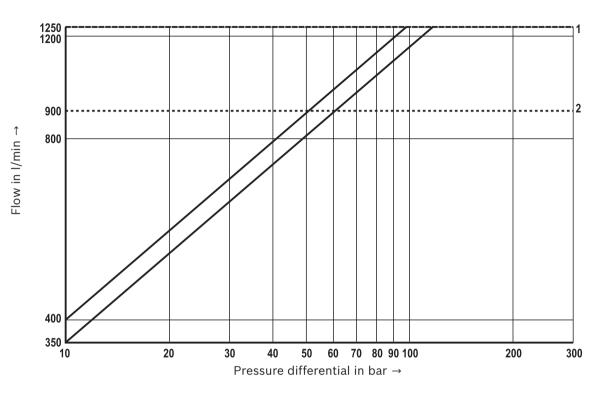

Transition function with stepped electric input signals

Symbols V and Q3-

- ▶ Pilot control valve, port X = 100 bar
- ► Main valve, port P = 10 bar

Frequency response characteristic curves

----- Signal ±1 %

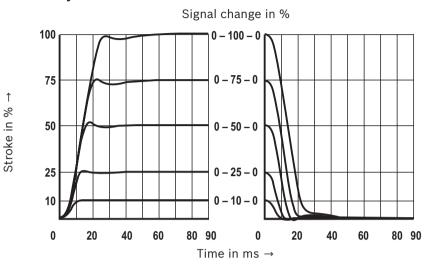

—-- Signal ±5%

---- Signal ±25%

Signal ±100%

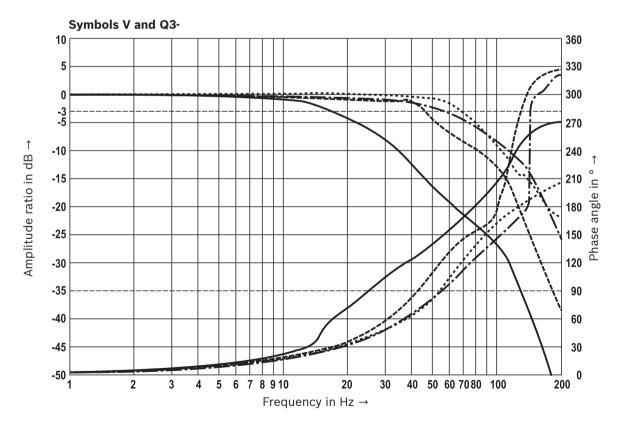
Characteristic curves: Size 25 (valid for HLP46, ϑ_{oil} = 40 ±5 °C)

Flow/load function with maximum valve opening (with maximum valve opening; tolerance ± 10%)


- 1 Maximum admissible flow
- 2 Recommended flow (flow velocity 30 m/s)

Characteristic curves: Size 27

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

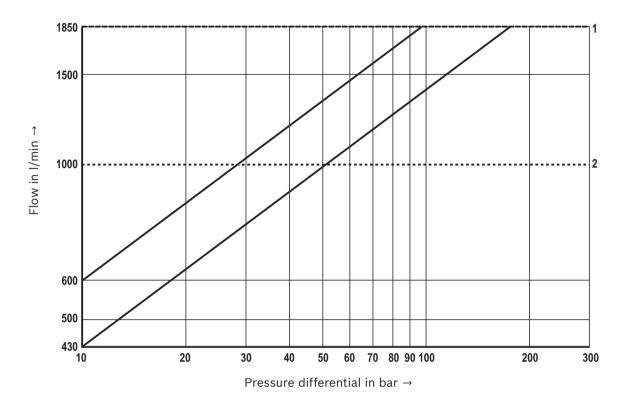

Transition function with stepped electric input signals

Symbols V and Q3-

- ▶ Pilot control valve, port X = 100 bar
- ► Main valve, port P = 10 bar

Frequency response characteristic curves

••••• Signal ±1 %

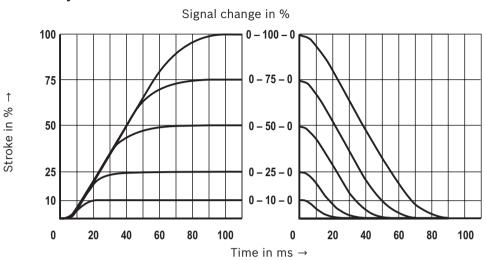

—-- Signal ±5%

---- Signal ±25%

Signal ±100%

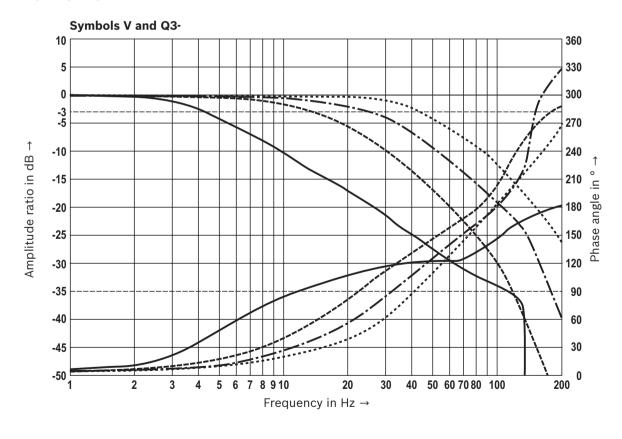
Characteristic curves: Size 27 (valid for HLP46, ϑ_{oil} = 40 ±5 °C)

Flow/load function with maximum valve opening (with maximum valve opening; tolerance ± 10%)


- 1 Maximum admissible flow
- 2 Recommended flow (flow velocity 30 m/s)

Characteristic curves: Size 35

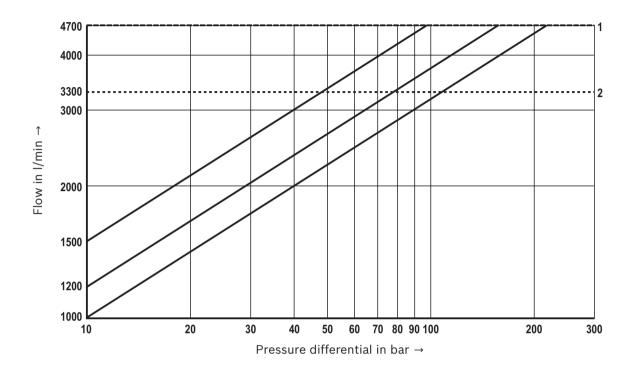
(measured with HLP46, ϑ_{oil} = 40 ±5 °C)


Transition function with stepped electric input signals

Symbols V and Q3-

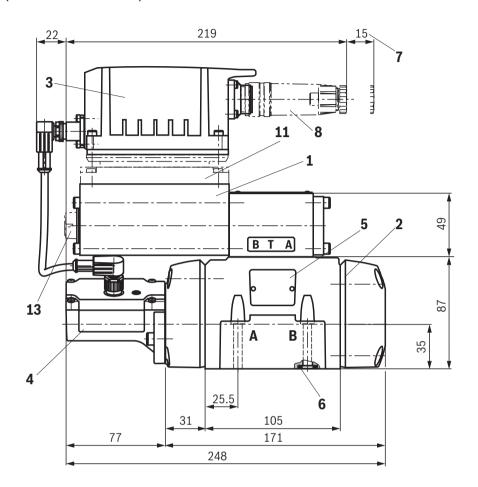
- ▶ Pilot control valve, port X = 100 bar
- ► Main valve, port P = 10 bar

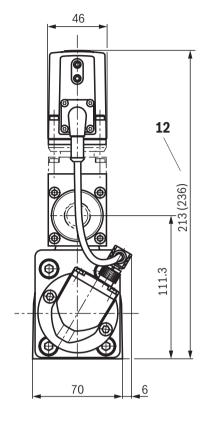
Frequency response characteristic curves

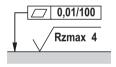

Signal ±1 %
Signal ±5%

---- Signal ±25%

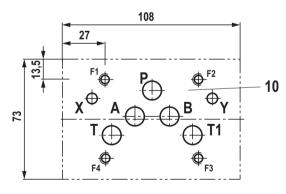
Signal ±100%


Characteristic curves: Size 35 (valid for HLP46, ϑ_{oil} = 40 ±5 °C)


Flow/load function with maximum valve opening (with maximum valve opening; tolerance ± 10%)



- 1 Maximum admissible flow
- 2 Recommended flow (flow velocity 30 m/s)


Dimensions: Size 10 (dimensions in mm)

Required surface quality of the valve contact surface

- 1 Pilot control valve
- 2 Main valve
- 3 Integrated electronics (OBE)
- 4 Inductive position transducer (main valve)
- 5 Name plate
- **6** Identical seal rings for ports P, A, B, T; Identical seal rings for ports X, Y
- 7 Space required for removing the mating connector
- **8** Mating connectors, separate order, see page 36 and data sheet 08006.
- 9 Locking pin
- **10** Machined valve contact surface, porting pattern according to ISO 4401-05-05-0-05
- 11 Damping plate "D"
- 12 Dimension in () for version with damping plate "D"
- 13 Electronics protection membrane "-967"

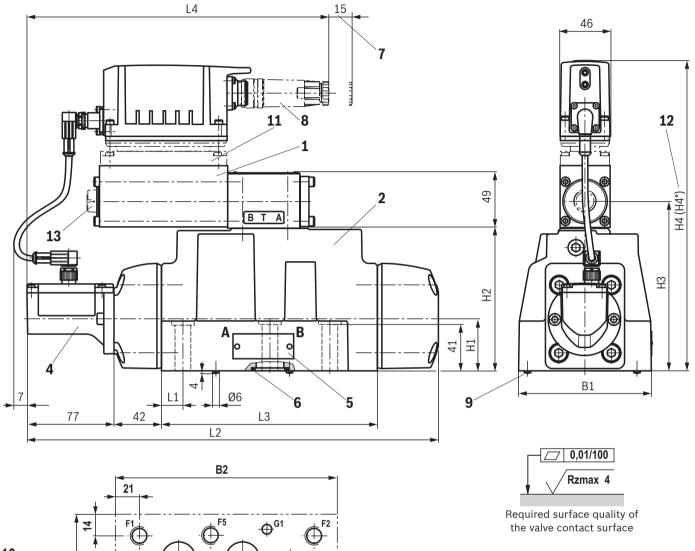
Valve mounting screws and subplates, see page 35.

Notes:

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 16 (dimensions in mm)

Valve mounting screws and subplates, see page 35.



The dimensions are nominal dimensions which are subject to tolerances.

- 5 Name plate
- **6** Identical seal rings for ports P, A, B, T; Identical seal rings for ports X, Y
- 7 Space required for removing the mating connector
- **8** Mating connectors, separate order, see page 36 and data sheet 08006.
- 9 Locking pin
- Machined valve contact surface, porting pattern according to ISO 4401-07-07-0-05 Deviating from the standard: Ports P, A, B, T – Ø20 mm
- 11 Damping plate "D"
- 12 Dimension in () for version with damping plate "D"
- 13 Electronics protection membrane "-967"

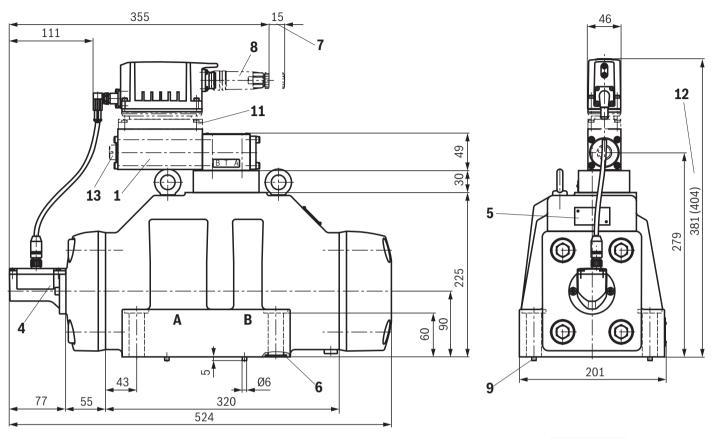
Dimensions: Size 25 and 27

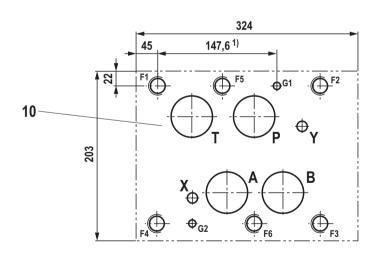
(dimensions in mm)

10 $\xrightarrow{\Xi}$ $\xrightarrow{F_1}$ $\xrightarrow{F_2}$ $\xrightarrow{F_3}$ $\xrightarrow{F_4}$ $\xrightarrow{F_4}$ $\xrightarrow{F_5}$ $\xrightarrow{F_5}$ $\xrightarrow{F_5}$ $\xrightarrow{F_6}$ $\xrightarrow{F_6}$ $\xrightarrow{F_3}$

NG	L1	L2	L3	L4	H1	H2	НЗ	Н4	H4*	Н5	B1	B2
25	19	364	191	274	46	126	150	251	274	120	118	195
27	20.5	371	198	277	50	140	164	265	288	124	120	200

Valve mounting screws and subplates, see page 35.

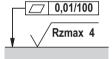

Notes:


The dimensions are nominal dimensions which are subject to tolerances.

- 1 Pilot control valve
- 2 Main valve
- 3 Integrated electronics (OBE)
- 4 Inductive position transducer (main valve)
- 5 Name plate
- 6 Identical seal rings for ports P, A, B, T; Identical seal rings for ports X, Y
- ${\bf 7} \quad {\bf Space} \ {\bf required} \ {\bf for} \ {\bf removing} \ {\bf the} \ {\bf mating} \ {\bf connector}$
- **8** Mating connectors, separate order, see page 36 and data sheet 08006.
- 9 Locking pin
- Machined valve contact surface, porting pattern according to ISO 4401-08-08-0-05 Deviating from the standard:
 - ▶ NG27: Ports P, A, B, T Ø32 mm
- 11 Damping plate "D"
- 12 Dimension in (*) for version with damping plate "D"
- 13 Electronics protection membrane "-967"

Dimensions: Size 35

(dimensions in mm)



Valve mounting screws and subplates, see page 35.

The dimensions are nominal dimensions which are subject to tolerances.

Required surface quality of the valve contact surface

- 1 Pilot control valve
- 2 Main valve
- 3 Integrated electronics (OBE)
- 4 Inductive position transducer (main valve)
- 5 Name plate
- **6** Identical seal rings for ports P, A, B, T; Identical seal rings for ports X, Y
- 7 Space required for removing the mating connector
- 8 Mating connectors, separate order, see page 36 and data sheet 08006.
- 9 Locking pin
- 10 Machined valve contact surface, porting pattern according to ISO 4401-10-09-0-05

Deviating from the standard:

Ports P, A, B, T – Ø50 mm

1) Position G1 according to DIN 24340 Form A

- 11 Damping plate "D"
- 12 Dimension in () for version with damping plate "D"
- 13 Electronics protection membrane "-967"

Dimensions

Valve mounting screws (separate order)

Size	Quantity	Hexagon socket head cap screws	Material number		
10	4	ISO 4762 - M6 x 45 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B	R913043777		
		tightening torque M_A = 13.5 Nm ±10%			
	or		·		
	4	ISO 4762 - M6 x 45 - 10.9	Not included in the Rexroth		
		tightening torque M _A = 15.5 Nm ±10%	delivery range		
16	2	ISO 4762 - M6 x 60 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B	R913043410		
		tightening torque M _A = 12.2 Nm ±10%			
	4	ISO 4762 - M10 x 60 - 10.9-flZn/nc/480h/C	R913014770		
		tightening torque M _A = 58 Nm ±20%			
	or				
	2	ISO 4762 - M6 x 60 - 10.9	Not included in the Rexroth		
		tightening torque M _A = 15.5 Nm ±10%	delivery range		
	4	ISO 4762 - M10 x 60 - 10.9			
		tightening torque M_A = 75 Nm ±20%			
25, 27	6	ISO 4762 - M12 x 60 - 10.9-flZn/nc/480h/C	R913015613		
		tightening torque M _A = 100 Nm ±20%			
	or				
	6	ISO 4762 - M12 x 60	Not included in the Rexroth		
		tightening torque M_A = 130 Nm ±20%	delivery range		
35	6	ISO 4762 - M20 x 90 - 10.9-flZn/nc/480h/C	R913009160		
		tightening torque M _A = 465 Nm ±20%			
	or				
	6	ISO 4762 - M20 x 90 - 10.9	Not included in the Rexroth		
		tightening torque M _A = 610 Nm ±20%	delivery range		

Notice:

- ► The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure.
- ▶ When replacing component series 3X with 4X, only the valve mounting screws listed here may be used. Prior to assembly, check the existing mounting bore on the block for sufficient screw-in depth.

Subplates (separate order) with porting pattern according to ISO 4401 see data sheet 45100.

Accessories (separate order)

Valve with integrated electronics

Mating connectors 6-pole + PE	Design	Version	Material number	Data sheet
For the connection of valves with integrated	straight	Metal	R900223890	08006
electronics, round connector 6+PE,	straight	Plastic	R900021267	08006
line cross-section 0.5 1.5 mm ²	angled	Plastic	R900217845	_

Cable sets 6-pole + PE	Length in m	Material number	Data sheet
For the connection of valves with integrated	3.0	R901420483	08006
electronics, round connector 6+PE, straight	5.0	R901420491	08006
connector, shielded, potted-in mating connector, line cross-section 0.75 mm ²	10.0	R901420496	08006
iiile Cross-section o.75 mill	20.0	R901448068	_

Test and service device

	Material number	Data sheet
Service case with test device for proportional servo valves with integrated electronics (OBE)		29685

Further information

	Subplates	Data sheet 45100
•	Hydraulic fluids on mineral oil basis	Data sheet 90220
•	Environmentally compatible hydraulic fluids	Data sheet 90221
•	Flame-resistant, water-free hydraulic fluids	Data sheet 90222
•	Flame-resistant hydraulic fluids - containing water (HFAE, HFAS, HFB, HFC)	Data sheet 90223
•	Reliability characteristics according to EN ISO 13849	Data sheet 08012
•	Hexagon socket head cap screw, metric/UNC	Data sheet 08936
•	General product information on hydraulic products	Data sheet 07008
•	Installation, commissioning and maintenance of servo valves and high-response valves	Data sheet 07700
•	Hydraulic valves for industrial applications	Data sheet 07600-B
•	Assembly, commissioning and maintenance of hydraulic systems	Data sheet 07900
•	Selection of the filters	www.boschrexroth.com/filter
•	Information on available spare parts	www.boschrexroth.com/spc

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.