ENGINEERING TOMORROW

Technical Information

Bent Axis Variable Displ. MotorsSeries 51 and 51-1

Revision history

Table of revisions

Date	Changed	Rev
October 2017	Modified theor. corner power ratings and updated to Engineering Tomorrow	0401
March 2015	Major update. Corrected DITA CMS structure, layout, colors and all tables.	CA
Jan 2014	Converted to Danfoss layout - DITA CMS	ВА
Jun 2005	First version	AA

Contents

Series 51 general informat	ion	
	Sectional view of Series 51, proportional control	
	Sectional view of Series 51-1, two-position control	
	Pictorial diagram	
	System circuit diagram	
	Series 51/51-1 name plates	11
Technical specifications		
	General specifications	
	Specific data	
	Fluid specifications	
	Determination of nominal motor size	1
General technical specifica	ations	
•	Case pressure	14
	Speed range	1
	Pressure limits	1:
	Loop flushing	1
	Minimum displacement limiter	
	Hydraulic fluids	1
	Temperature and viscosity	
	Filtration system	
	Fluid selection	
	Reservoir	
	Independent braking system	
	Motor bearing life	
	External shaft loads	
	External shaft load orientation	
	Radial and thrust loads to the output shaftAllowable external shaft load, when shaft load distance is different from standard	
	Efficiency graphs and maps	
	Speed sensor	
	Typical control and regulator applications	
Controls sixsuit diagram	nomenclature – description	
Controls Circuit diagram -	Option N1NN – hydraulic two-position control for 51-1 (frame size: 060, 080, 110)	2
	Option HZB1 – hydraulic two-position control for 51 (frame size: 160, 250)	
	Options TA** – pressure compensator control for 51-1 (frame size: 060, 080, 110)	
	Option TACA: pressure compensator configuration with hydraulic Brake Pressure Defeat	
	Options TAD1, TAD2, TAD7: pressure compensator configuration with electric BPD	
	TAD* solenoid connectors	
	Option TAC2: pressure compensator configuration without Brake Pressure Defeat	3
	Options TA** – pressure compensator controls for 51 (frame size 160, 250)	
	Option TACO: pressure compensator configuration with hydraulic Brake Pressure Defeat	3
	Option TAC2: pressure compensator configuration without Brake Pressure DefeatDefeat	
	Options TH** – hydraulic two-position control for 51-1 (frame size: 060, 080, 110)	
	Pressure Compensator OverRide (PCOR)	
	Option THCA: pressure compensator configuration with hydraulic Brake Pressure Defeat	
	Options THD1, THD2, THD7: pressure compensator configuration with electric BPD	
	THD* solenoid connectors	
	Option THC2: pressure compensator configuration without Brake Pressure Defeat	
	Options TH** – hydraulic two-position control for 51 (frame size 160, 250)	
	Pressure Compensator OverRide (PCOR)	
	Option THC0: pressure compensator configuration with hydraulic BPD	
	Option THC2: pressure compensator configuration without Brake Pressure Defeat	
	Options E1B1, E2B1, E7B1 – electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)	
	E1B1, E2B1, E7B1 solenoid connectors	
	E1A5, E2A5 – electronydraulic two-position control for 51 (frame size 160, 250)	
	Options F1B1, F2B1 – electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)	
	F1B1, F2B1 solenoid connectors	
	,	

Contents

	Options F1A5, F2A5 – electrohydraulic two-position control for 51 (frame size 160, 250)	46
	F1A5, F2A5 solenoid connectors	
	Options T1**, T2**, T7** – electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)	48
	Option T*CA: pressure compensator configuration with hydraulic Brake Pressure Defeat	49
	Options T*D1, T*D2, T* D7: pressure compensator configuration with electric BPDBPD	49
	T1D1, T2D2, T7D7 solenoid connectors	50
	Option T*C2: pressure compensator configuration without Brake Pressure Defeat	50
	Options T1**, T2** – electrohydraulic two-position control for 51 (frame size 160, 250)	
	Option T*C0: pressure compensator configuration with hydraulic Brake Pressure Defeat	
	Option T*C2: pressure compensator configuration without Brake Pressure Defeat	
	T1C2, T2C2 solenoid connectors	
	Options EP**, EQ** – electrohydraulic proportional control for 51 (all frame sizes)	
	Pressure Compensator Override (PCOR)	
	Options EPA1, EQA1: pressure compensator configuration with Brake Pressure Defeat	
	Options EPA2, EQA2: pressure compensator configuration without Brake Pressure Defeat	
	Options L1B1, L2B1, L7B1 – electrohydraulic proportional control for 51 (all frame sizes)	
	L1B1, L2B1, L7B1 solenoid connectors	5/
	Options D7M1, D8M1 – electrohydraulic proportional control with PCOR and hydraulic BPD for 51	
	(all frame sizes)	
	Options D7M1, D8M1: pressure compensator configuration with hydraulic Brake Pressure Defeat	
	D7M1, D8M1 solenoid connector	
	Options HS** – hydraulic proportional control for 51 (all frame sizes)	
	Pressure Compensator OverRide (PCOR)	
	Option HSA1: pressure compensator configuration with Brake Pressure Defeat	
	Option HSA2: pressure compensator configuration without Brake Pressure Defeat Defeat	
	Option HZB1 – hydraulic proportional control for 51 (all frame sizes)	62
General dimensions – frame	a siza 060	
Sellerai dillielisiolis – Italile	SAE flange design per ISO 3019/1	61
	DIN flange design per ISO 3019/1	
	Cartridge flange	70
General dimensions – frame	e size 080	
	SAE flange design per ISO 3019/1	73
	DIN flange design per ISO 3019/2	
	Cartridge flange	
General dimensions – frame		
	SAE flange design per ISO 3019/1	
	DIN flange design per ISO 3019/2	
	Cartridge flange	88
General dimensions – frame	o sizo 160	
Sellerai dillielisiolis – Italile	SAE flange design per ISO 3019/1	91
	DIN flange design per ISO 3019/2	
	Cartridge flange	
	Carriage nange	93
General dimensions – frame	e size 250	
	SAE flange design per ISO 3019/1	97
Simon Control		
Dimension – Controls	Oction TA** for F1.1. Decome Compared a Control (Forms Circ. 000, 000, 110)	00
	Options TA** for 51-1 – Pressure Compensator Control (Frame Size: 060, 080, 110)	
	Options TA** for 51 – Pressure Compensator Control (Frame Size: 160, 250)	
	Options TH** for 51-1 – Hydraulic Two-Position Control (Frame Size: 060, 080, 110)	
	Options TH** for 51 – Hydraulic Two-Position Control (Frame Size: 160, 250)	
	Options E*B1, F*B1 for 51-1 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)	
	Options E*A5, F*A5 for 51 – Electrohydraulic Two-Position Control (Frame Size: 160, 250)	
	Options T1**, T2**, T7** for 51-1 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)	
	Options T1C2, T2C2 for 51 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)	
	Options EPA1, EQA1 for 51 – Electrohydraulic Two-Position Control (All Frame Sizes)	107
	Options L1B1, L2B1, L7B1 for 51 – Electrohydraulic Two-Position Control (All Frame Sizes)	108
	Options D7M1, D8M1 for 51 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)	109

Contents

Options D7M1, D8M1 for 51 – Electrohydraulic Two-Position Control (Frame Size: 160, 250)	110
Option HSA* for 51 – Hydraulic Proportional Control (All Frame Sizes)	111
Option HZB1 for 51 – Hydraulic Proportional Control (All Frame Sizes)	112

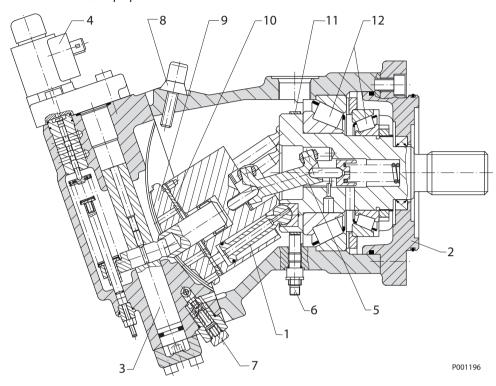
Series 51 and 51-1 variable displacement motors are bent axis design units, incorporating spherical pistons.

These motors are designed primarily to be combined with other products in closed circuit systems to transfer and control hydraulic power. Series 51 and 51-1 motors have a large maximum / minimum displacement ratio (5:1) and high output speed capabilities. SAE, cartridge, and DIN flange configurations are available.

A complete family of controls and regulators is available to fulfill the requirements of a wide range of applications.

Motors normally start at maximum displacement. This provides maximum starting torque for high acceleration.

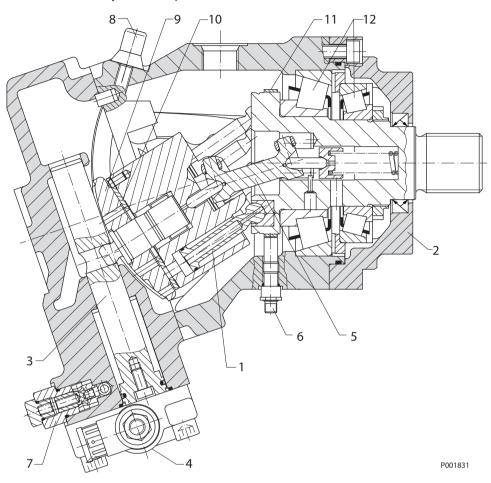
The controls may utilize internally supplied servo pressure. They may be overridden by a pressure compensator which functions when the motor is operating in motor and pump modes. A defeat option is available to disable the pressure compensator override when the motor is running in pump mode.


The pressure compensator option features a low pressure rise (short ramp) to ensure optimal power utilization throughout the entire displacement range of the motor. The pressure compensator is also available as a stand-alone regulator.

- The series 51 and 51-1 motors Advanced technology
- The most technically advanced hydraulic units in the industry
- SAE, cartridge, and DIN flange motors
- · Cartridge motors designed for direct installation in compact planetary drives
- Large displacement ratio (5:1)
- Complete family of control systems
- · Proven reliability and performance
- Optimum product configurations
- Compact, lightweight

Sectional view of Series 51, proportional control

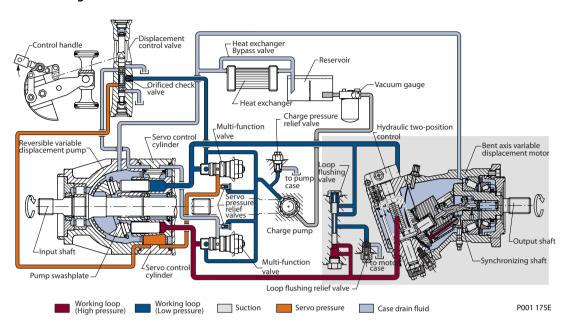
Series 51 with electric proportional control


Legend:

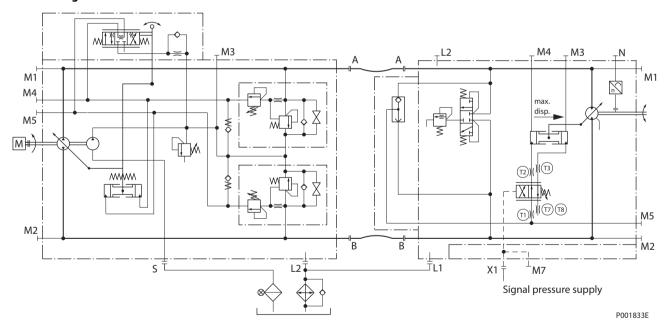
- 1 Piston
- 2 Flange
- **3** Servo piston
- 4 Electric proportional control
- **5** Synchronizing shaft
- **6** Speed sensor
- 7 Charge pressure relief valve
- **8** Minimum displacement limiter
- 9 Valve segment
- 10 Bearing plate
- 11 Speed pickup ring
- **12** Tapered roller bearings

Sectional view of Series 51-1, two-position control

Series 51 with electrohydraulic two-position control



Legend:


- 1 Piston
- 2 Flange
- **3** Servo piston
- 4 Electrohydraulic two-position control
- 5 Synchronizing shaft
- **6** Speed sensor
- **7** Charge pressure relief valve
- 8 Minimum displacement limiter
- 9 Valve segment
- **10** Bearing plate
- 11 Speed pickup ring
- 12 Tapered roller bearings

Pictorial diagram

System circuit diagram

Above schematic shows the function of a hydrostatic transmission using a Series 90 Axial Piston Variable Displacement Pump with manual displacement control (MA) and a Series 51 Bent Axis Variable Displacement Motor with hydraulic two-position control (HZ).

Series 51/51-1 name plates

Series 51 name plate

Series 51-1 name plate

Technical specifications

General specifications

Most specifications for bent axis variable displacement motors are listed on these pages. For definitions of the various specifications, see the related pages in this publication. Not all hardware options are available for all configurations; consult the series 51 and 51-1 model code supplement or price book for more information.

General specifications

Design	Axial piston motor with variable displacement, bent axis design			
Direction of rotation	Clockwise and counter-clockwise (bi-directional)			
Recommended installation	Discretionary, the housing must always be filled with hydraulic fluid			
Other system requirements	Independet braking system, circuit overpressure protection, suitable reservoir			

Specific data

Physical properties

Features		Unit	Size				
		Unit	060	080	110	160	250
Displacement	Maximum	cm³ [in³]	60.0 [3.66]	80.7 [4.92]	109.9 [6.71]	160.9 [9.82]	250 [15.26]
	Minimum		12 [0.73]	16.1 [0.98]	22 [1.34]	32.2 [1.96]	50.0 [3.05]
Theor. flow at	at rated speed	l/min	216 [57]	250 [66]	308 [81]	402 [106]	550 [145]
max. displ.	at max. speed	[US gal/min]	264 [71]	323 [85]	396 [105]	515 [136]	675 [178]
Theor. corner power at rated speed and max. working pressure (Δp = 450 bar [6527 psi])		kW [hp]	252 [338]	300 [402]	371 [498]	480 [644]	638 [856]
Theoretical torque	at max. displ.	N•m/bar [lbf•in/1000 psi]	0.95 [583]	1.28 [784]	1.75 [1067]	2.56 [1563]	3.98 [2428]
	at min. displ.		0.19 [117]	0.26 [156]	0.35 [214]	0.51 [313]	0.80 [486]
Mass moment of inertia of rotating components		kg•m² [slug•ft²]	0.0046 [0.1092]	0.0071 [0.1685]	0.0128 [0.3037]	0.0234 [0.5553]	0.0480 [1.1580]
Rated speed	at max. displ.		3600	3100	2800	2500	2200
	at min. displ.		5600	5000	4500	4000	3400
Maximum speed*	at max. displ.	min ⁻¹ (rpm)	4400	4000	3600	3200	2700
	at min. displ.		7000	6250	5600	5000	4250

Contact Danfoss representative for max. speed at displacements between max. and min. displacement.

Technical specifications

System and case pressure

Parameter	Unit	All sizes	
	Maximum delta		480 [7000]
System pressure	Maximum	- bar [psi]	510 [7400]
	Minimum low		10 [145]
	Rated		3 [44]
Case pressure	Maximum (cold start)		5 [73]
	Minimum (at rated speed)		0.3 [4.35]

Fluid specifications

Fluid specifications

Features	Unit	All sizes		
	Minimum intermittent	_	7 [49]	
Viscosity	Recommended range	mm²/s [SUS]	12-80 [66-366]	
	Maximum intermittent		1600 [7416]	
	Minimum		-40 [-40]	
Temperature range ¹⁾²⁾	Rated	°C [°F]	104 [220]	
	Maximum intermittent		115 [240]	
	Required cleanliness per ISO 4406	-	22/18/13	
Cleanliness and Filtration	Efficiency (charge pressure filtration)	β-ratio	$\beta_{15-20} = 75 \ (\beta_{10} \ge 10)$	
	Efficiency (suction / return line filtration)	ρ-ratio	$\beta_{35-45} = 75 \ (\beta_{10} \ge 2)$	
	Recommended inlet screen mesh size	μm	100 – 125	

¹⁾ At the hottest point, normally case drain port.

 $^{^{2)}}$ Minimum: cold start, short term t<3 min, p<50 bar, n<1000 rpm.

Technical specifications

Determination of nominal motor size

$$Q_e \; = \; \frac{V_g \boldsymbol{\cdot} \, n}{1000 \boldsymbol{\cdot} \, \eta_v}$$

$$M_{\text{e}} \, = \, \frac{V_{\text{g}} \boldsymbol{\cdot} \Delta p \boldsymbol{\cdot} \eta_{\text{mh}}}{20 \boldsymbol{\cdot} \pi}$$

$$P_{e} \; = \; \frac{M_{e} \boldsymbol{\cdot} n}{9550} \; = \; \frac{Q_{e} \boldsymbol{\cdot} \Delta p \boldsymbol{\cdot} \eta_{t}}{600}$$

$$n = \frac{Q_e \cdot 1000 \cdot \eta_v}{V_g}$$

Where:

Qe Input flow (I/min)

M_e Output torque (N•m)

P_e Output power (kW)

n Speed (min⁻¹)

V_g Motor displacement per rev. (cm³/rev)

phigh High pressure (bar)

plow Low pressure (bar)

Δp High pressure minus Low pressure (bar)

 η_v Motor volumetric efficiency

 η_{mh} Mechanical-hydraulic efficiency

 η_t Motor total efficiency $(\eta_v \cdot \eta_{mh})$

Based on US units

$$Q_e = \frac{V_g \cdot n}{231 \cdot \eta_v}$$

$$M_{\text{e}} \, = \, \frac{V_{\text{g}} \boldsymbol{\cdot} \Delta p \boldsymbol{\cdot} \eta_{\,\text{mh}}}{2 \boldsymbol{\cdot} \pi}$$

$$P_e \; = \; \frac{V_g \boldsymbol{\cdot} n \boldsymbol{\cdot} \Delta p \boldsymbol{\cdot} \eta_t}{396\,000}$$

$$n \; = \; \frac{Q_{\rm e} \, {\boldsymbol \cdot} \, 231 \, {\boldsymbol \cdot} \, \eta_{\nu}}{V_{\rm g}} \label{eq:number}$$

Where:

Q_e Input flow [US gal/min]

Me Output torque [lb•in]

Pe Output power [hp]

n Speed [rpm]

V_a Motor displacement per rev. [in³/rev]

phigh High pressure [psi]

plow Low pressure [psi]

Δp High pressure minus Low pressure [psi]

 η_v Motor volumetric efficiency

η_{mh} Mechanical-hydraulic efficiency

 η_t Motor total efficiency $(\eta_v \cdot \eta_{mh})$

Case pressure

Under normal operating conditions, case pressure must not exceed the rated pressure. Momentary case pressure exceeding this rating is acceptable under cold start conditions, but still must stay below the maximum pressure rating.

The minimum pressure provides proper lubrication at high speeds.

Operation with case pressure in excess of these limits may result in external leakage due to damage to seals, gaskets, and/or housings.

Case pressure

Parameter		Unit	All sizes
	Rated		3 [44]
Case pressure	Maximum (cold start)	bar [psi]	5 [73]
	Minimum (at rated speed)		0.3 [4.35]

Speed range

Rated speed is the speed limit recommended at full power condition and is the highest value at which normal life can be expected.

Maximum speed is the highest operating speed permitted and cannot be exceeded without reduction in the life of the product or risking immediate failure and loss of driveline power (which may create a safety hazard). In the range between rated and maximum speed please contact your Danfoss Power Solutions representative.

A Warning

The loss of hydrostatic drive line power in any mode of operation (e.g., forward, reverse, or "neutral") may cause the loss of hydrostatic braking capacity. A braking system, redundant to the hydrostatic transmission must, therefore, be provided which is adequate to stop and hold the system should the condition develop.

Speed limits

Features		Unit	Size				
		Oilit	060	080	110	160	250
Rated speed	at max. displ.	- min ⁻¹ (rpm)	3600	3100	2800	2500	2200
	at min. displ.		5600	5000	4500	4000	3400
Maximum speed	at max. displ.		4400	4000	3600	3200	2700
	at min. displ.		7000	6250	5600	5000	4250

Speed limits Maximim speed at min. displacement Curve determined by rated flow Maximum speed at max. displacement Rated speed at min. displacement Speed min-1 (rpm Acceptable operating range Rated speed at max displacement Min. displacement Max. displacement Motor angle (degrees) P001 781E

For operation within the range above the acceptable range contact Danfoss Power Solutions representative.

Pressure limits

System pressure is the dominant operating variable affecting hydraulic unit life. High pressure, which results from high load, reduces expected life in a manner similar to the affects of high load on other mechanical assemblies such as engines and gear boxes. There are load-to-life relationships for the rotating group and for the shaft anti-friction bearings.

Continuous pressure is the pressure at which the hydrostatic system could operate continuously and still achieve acceptable hydrostatic life. This pressure level varies depending on operating speed, and on the life requirements for a particular application. While most mobile applications require system pressure to vary widely during operation, a "weighted average" pressure can be derived from a machine duty cycle. (A duty cycle is a means of quantifying the pressure and speed demands of a particular system on a percent time basis). Once a duty cycle has been determined or estimated for a specific application, contact your Danfoss representative for system life ratings for the application.

Maximum delta pressure is the highest intermittent pressure allowed, and is the relief valve setting. It is determined by the maximum machine load demand. For most systems, the load should move at this pressure.

Maximum pressure is assumed to occur a small percentage of operating time, usually less than 2 % of the total. Both the continuous and maximum pressure limits must be satisfied to achieve the expected life.

Minimum low pressure must maintained under all operating conditions to avoid cavitation.

System pressure range, input

Maximum delta pressure	Minimum low pressure	Maximum pressure
480 [7000 psi]	10 [145 psi]	510 [7400 psi]

Loop flushing

An integral non-adjustable loop flushing valve is incorporated into all these motors. Installations that require fluid to be removed from the low pressure side of the system circuit because of cooling requirements or contamination removal will benefit from loop flushing.

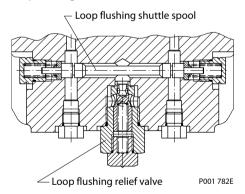
The integral loop flushing valve is equipped with an orificed charge pressure relief valve designed with a cracking pressure of 16 bar [232 psi].

Valves are available with several orifice sizes to meet the flushing flow requirements of all system operating conditions.

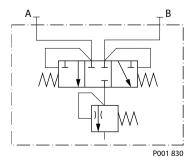
The total system charge pump flow should be of sufficient volume to accommodate:

- The number of motors in the system
- System efficiency under worst case conditions
- Pump control requirements
- External needs

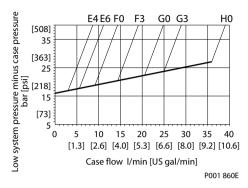
Although charge pump sizing requires the consideration of many system variables, the following table gives a recommendation of what charge pump displacement may be required to accommodate the flushing flow of each available charge relief valve orifice.


Recommended charge pump displacement

Loop flushing valve	E4, E6	F0	F3	G0	G3	но
Charge pump size (cm ³)	8	11	14	17 or 20	26	34, 47 or 65


A Warning

The loss of hydrostatic drive line power in any mode of operation (e.g., forward, reverse, or "neutral" mode) may cause the loss of hydrostatic braking capacity. A braking system, redundant to the hydrostatic transmission must, therefore, be provided which is adequate to stop and hold the system should the condition develop.


Loop flushing valve

Hydraulic schematic

Case flow characteristic

Equation:

$$Q_{Flush} = \frac{Q_{Charge} - Q_{Leak}}{2 \cdot k_{Mo}}$$

Where:

Q_{Flush} – flushing flow per motor

Q_{Charge} – charge flow at operating speed

k_{Mo} - number of motors feeded by one pump

Q_{Leak} - sum of external leakages

Q_{Leak} includes:

- motor leakage
- pump leakage + internal consumers:
 - 8 l/min [2.11 US gal/min] for displacement control pumps or
 - for non-feedback controlled pumps at 200 bar [2900 psi]
- external consumers:
 - e.g. brakes, cylinders, and other pumps

Minimum displacement limiter

All Series 51 and 51-1 motors incorporate mechanical displacement limiters.

The minimum displacement of the motor is preset at the factory with a set screw in the motor housing. A tamper-proof cap is provided.

Hydraulic fluids

Ratings and data are based on operating with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion and corrosion of the internal components.

Fire resistant fluids are also suitable at modified operating conditions. Please see Danfoss literature Technical Information *Hydraulic Fluids and Lubricants* for more information.

For more information contact your Danfoss representative.

Caution

It is not permissible to mix hydraulic fluids.

Suitable hydraulic fluids:

- Hydraulic fluids per DIN 51 524, part 2 (HLP)
- Hydraulic fluids per DIN 51 524, part 3 (HVLP)
- API CD, CE and CF engine fluids per SAE J183
- M2C33F or G automatic transmission fluids (ATF)
- Agricultural multi purpose oil (STOU)
- Premium turbine oils (for Premium turbine oils contact your Danfoss representative).

Temperature and viscosity

Temperature and viscosity requirements must be concurrently satisfied. The data shown in the tables assume petroleum-based fluids, are used.

The high temperature limits apply at the hottest point in the transmission, which is normally the motor case drain. The system should generally be run at or below the **rated temperature**. The **maximum temperature** is based on material properties and should never be exceeded.

Cold oil will generally not affect the durability of the transmission components, but it may affect the ability to flow oil and transmit power; therefore temperatures should remain $16 \,^{\circ}$ C [30 $^{\circ}$ F] above the pour point of the hydraulic fluid. The **minimum temperature** relates to the physical properties of component materials.

For maximum unit efficiency and bearing life the fluid viscosity should remain in the **recommended operating range**. The **minimum viscosity** should be encountered only during brief occasions of maximum ambient temperature and severe duty cycle operation. The **maximum viscosity** should be encountered only at cold start.

Heat exchangers should be sized to keep the fluid within these limits. Testing to verify that these temperature limits are not exceeded is recommended.

Viscosity and temperature re	range
------------------------------	-------

Features	Unit	All sizes	
	Minimum intermittent	_	7 [49]
Viscosity	Recommended range	mm²/s [SUS]	12-80 [66-366]
	Maximum intermittent		1600 [7416]
	Minimum		-40 [-40]
Temperature range ¹⁾²⁾	Rated	°C [°F]	104 [220]
	Maximum intermittent		115 [240]

¹⁾ At the hottest point, normally case drain port.

Filtration system

To prevent premature wear, ensure that only clean fluid enters the hydrostatic transmission circuit. A filter capable of controlling the fluid cleanliness to ISO 4406, class 22/18/13 (SAE J1165) or better, under normal operating conditions, is recommended. These cleanliness levels cannot be applied for hydraulic fluid residing in the component housing/case or any other cavity upon delivery from the factory.

The filter may be located on the pump (integral) or in another location (remote or suction). The integral filter has a filter bypass sensor to signal the machine operator when the filter requires changing. Filtration strategies include suction or pressure filtration. The selection of the filter strategy depends on a number of factors including the contaminant ingression rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Filters are selected to meet the above requirements using rating parameters of efficiency and capacity.

Filter efficiency can be measured with a Beta ratio (β_X). For simple suction-filtered closed circuit transmissions and open circuit transmissions with return line filtration, a filter with a β -ratio within the

²⁾ Minimum: cold start, short term t<3 min, p<50 bar, n<1000 rpm.

range of $\beta_{35-45} = 75$ ($\beta_{10} \ge 2$) or better has been found to be satisfactory. For some open circuit systems, and closed circuits with cylinders being supplied from the same reservoir, a higher filter efficiency is recommended. This also applies to systems with gears or clutches using a common reservoir. For these systems, a charge pressure or return filtration system with a filter β -ratio in the range of $\beta_{15-20} = 75$ ($\beta_{10} \ge$ 10) or better is typically required.

Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see Design Guidelines for Hydraulic Fluid Cleanliness, Technical Information BC0000095.

Filter β_x -ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter ("x" in microns) upstream of the filter to the number of these particles downstream of the filter.

Filtration, cleanliness level and β_x -ratio (recommended minimum)

Cleanliness per ISO 4406	22/18/13
Efficiency β_x (charge pressure filtration)	$\beta_{15-20} = 75 \ (\beta_{10} \ge 10)$
Efficiency β_x (suction and return line filtration)	$\beta_{35-45} = 75 \ (\beta_{10} \ge 2)$
Recommended inlet screen mesh size	100 – 125 μm

Fluid selection

Ratings and performance data are based on operating with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of motor components.

Caution

Never mix hydraulic fluids of different types.

Fire resistant fluids are also suitable at modified operating conditions. For more information, see Hydraulic Fluids and Lubricants, Technical Information **BC0000093**.

Reservoir

The function of the reservoir is to remove air and to provide make up fluid for volume changes associated with fluid expansion or contraction, possible cylinder flow, and minor leakage.

The reservoir should be designed to accommodate maximum volume changes during all system operating modes and to promote deaeration of the fluid as it passes through the tank.

A minimum reservoir volume equal to 1/2 to 1 1/2 times charge pump flow/min is suggested. This allows 30 seconds fluid dwell for removing entrained air at the maximum return flow. This is usually adequate to allow for a closed reservoir (no breather) in most applications. The reservoir outlet to the charge pump inlet should be above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the charge inlet line.

The reservoir inlet (fluid return) should be positioned so that the flow to the reservoir is discharged below the normal fluid level, and also directed into the interior of the reservoir for maximum dwell and efficient deaeration.

Independent braking system

Warning

The loss of hydrostatic drive line power in any mode of operation (e.g., forward, reverse, or "neutral" mode) may cause the loss of hydrostatic braking capacity. A braking system, redundant to the hydrostatic transmission must, therefore, be provided which is adequate to stop and hold the system should the condition develop.

Motor bearing life

The rated motor bearing life L_{h10} shown in the table below is based on a 90 % survival rate of shaft bearings, when operating at a speed of $n = 1500 \text{ min}^{-1}$ (rpm) with a charge pressure of 20 bar [290 psi] and without external shaft load.

The rated motor bearing life L_{h10} (hours)

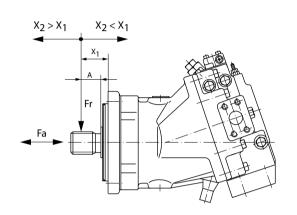
Frame Size	Effective Δ pressure		Motor ang	le
	bar [psi]	6°	15°	32°
	140 [2030]	19 800	18 530	16 370
060	210 [3050]	6320	5960	5340
	280 [4060]	2740	2600	2350
	140 [2030]	14 420	13 580	12 120
080	210 [3050]	4610	4370	3960
	280 [4060]	2000	1910	1750
	140 [2030]	15 800	14 890	13 330
110	210 [3050]	5040	4790	4350
	280 [4060]	2180	2090	1920
	140 [2030]	15 670	14 770	13 200
160	210 [3050]	5005	4750	4300
	280 [4060]	2170	2070	1900
	140 [2030]	11 760	11 130	10 020
250	210 [3050]	3750	3580	3260
	280 [4060]	1630	1560	1440

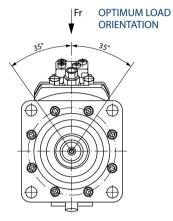
Lifetimes for speeds other than 1500 min⁻¹ (rpm) can be calculated from:

$$L_2 = \frac{L_1 \cdot 1500}{n_2} \quad \text{hours}$$

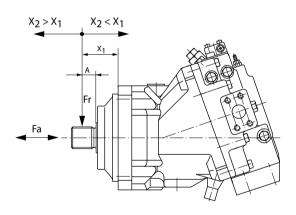
 $\begin{array}{lll} \underline{\textit{Where:}} & & \underline{\textit{Units:}} \\ L_1 & = & \text{Rated } L_{10} \text{ life at } 1500 \text{ min}^{-1} \text{ (rpm)} \\ n_2 & = & \text{Operating speed} & \text{min}^{-1} \text{ (rpm)} \end{array}$

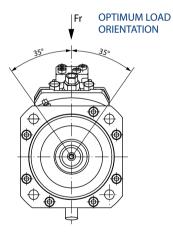
Contact your Danfoss Power Solutions representative for bearing life values at other pressure and angle.

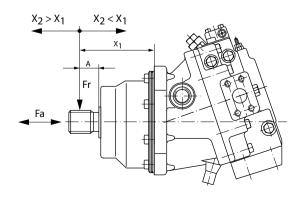

External shaft loads

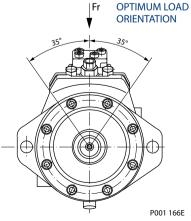

Series 51 and 51-1 motors are designed with bearings that can accept external radial and thrust loads.

The external radial shaft load limits are a function of the load position, the load orientation, and operating conditions of the unit.


External shaft load orientation


SAE-Flange design per ISO 3019/1




DIN-Flange design per ISO 3019/2

Cartridge Flange design

Radial and thrust loads to the output shaft

The table below provides the following information:

- The maximum allowable radial load (Fr) based on the distance (X₁) from the mounting flange to the load.
- The maximum allowable axial load (**Fa**).
- The actual distance of Fr for a given application from the mounting flange to the load (X_2) .
- The basic distance (A).
- Fa/Δp ratio of allowable axial load, dependent upon the system pressure.

Radial and thrust loads to the output shaft

Feature	Symbol	Unit			Frame Siz	e	
			060	080	110	160	250
Maximum allowable radial load	Fr	NI FILE	10 000 [2248]	12 000 [2698]	14 000 [3147]	18 000 [4047]	26 000 [5845]
Max. allow. axial load at zero rpm, or running in the idle pressure	Fa	N [lb]	1100 [247]	1400 [315]	1800 [405]	2500 [562]	4500 [1012]
Max. allowable bending moment	М	N•m [lb•in]	252 [2230]	307 [2717]	766 [6780]	805 [7125]	970 [8585]
Max. allowable axial load at pressure	Fa/∆p	N/bar [lb/1000 psi]	10.4 [161]	12.6 [195]	15.2 [236]	19.2 [298]	26.4 [409]
Distance SAE mounting flange			33.6 [1.32]	33.6 [1.32]	62.7 [2.47]	52.7 [2.07]	45.3 [1.78]
Distance DIN mounting flange	X ₁	mm [in]	57.2 [2.25]	57.6 [2.27]	94.7 [3.73]	84.7 [3.33]	_
Distance Cartridge mount. flange		, , , , , , , , , , , , , , , , , , , ,	117.6 [4.63]	136.1 [5.36]	177.5 [7.0]	_	_
Basic distance	A		25.2 [0.99]	25.6 [1.01]	54.7 [2.15]	44.7 [1.76]	37.3 [1.47]

^{- =} not available

The values in the table are maximum values and are not allowed under continuous load conditions.

Allowable external shaft load, when shaft load distance is different from standard

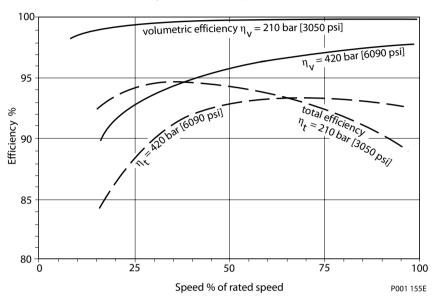
Use this formula to calculate maximum allowable radial load when max, shaft load distance $\mathbf{X_2}$ is different from $\mathbf{X_1}$:

Metric system:				Inch system:			
$X_2 > X_1$	Fr	$= \frac{\mathbf{M} \cdot 10^3}{\mathbf{A} \cdot \mathbf{X}_1 + \mathbf{X}_2}$	Ζ	$X_2 > X_1$	Fr	$= \frac{M \cdot 12}{A - X_1 + X_2}$	lbf

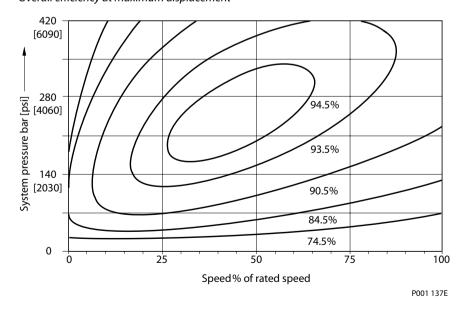
Metric or Inch system:

$$X_2 > X_1 Fr = Fr_{max} N [lbf]$$

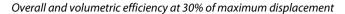
 X_2 is the actual distance of **Fr** from the mounting flange to the load for a given application. If $X_2 < X_1$, **Fr** could also be calculated by the first equation, but in addition the bearing life has to be checked.

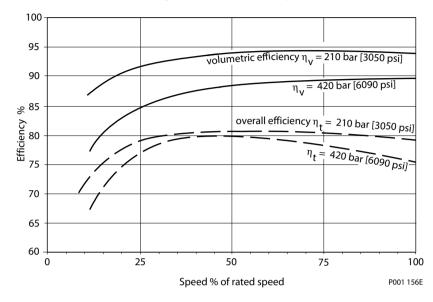

Contact your Danfoss representative for load ratings of specific shafts or when the load orientation deviates more than 35° in either direction from the optimum.

Efficiency graphs and maps

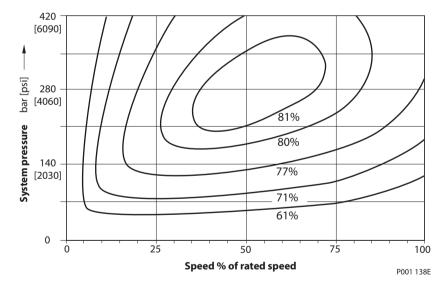

This graph provides the volumetric and overall efficiencies for a typical Series 51 and 51-1 motor operating at maximum displacement, system pressures of 210 and 420 bar [3050 and 6090 psi], and a fluid viscosity of 8.2 mm²/s [53 SUS]. These efficiencies can be used for all frame sizes.

Overall and volumetric efficiency at maximum displacement


This graph shows typical overall efficiencies for Series 51 and 51-1 motors operating at maximum displacement and system pressures up to 420 bar [6090 psi], and a fluid viscosity of 8.2 mm²/s [53 SUS]. These efficiencies can be used for all frame sizes.


Overall efficiency at maximum displacement

This graph shows typical overall efficiencies for Series 51 and 51-1 motors operating at 30% of maximum displacement and system pressures up to 420 bar [6090 psi], and a fluid viscosity of 8.2 mm²/s (53 SUS). These efficiencies can be used for all frame sizes.



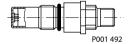
This graph shows typical overall efficiencies for Series 51 and 51-1 motors operating at 30% of maximum displacement and system pressures up to 420 bar [6090 psi], and a fluid viscosity of 8.2 mm²/s (53 SUS). These efficiencies can be used for all frame sizes.

Overall efficiency at 30% of maximum displacement

Speed sensor

An optional speed sensor for direct measurement of speed is available. This sensor may also be used to sense the direction of rotation. A special magnetic speed pick-up ring is pressed onto the outside diameter of the shaft and a Hall effect sensor is located in the motor housing. The sensor accepts supply voltage and outputs a digital pulse signal in response to the speed of the ring. The output changes its high/low state as the north and south poles of the permanently magnetized speed ring pass by the face of the sensor. The digital signal is generated at frequencies suitable for microprocessor based controls. The sensor is available with different connectors (see below). The SAE and DIN flange motors use a flat end speed sensor. The cartridge flange motors use a conical end speed sensor.

Data magnetic speed pick-up ring

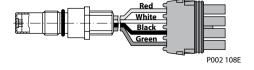

Frame size	060	080	110	160	250
Pulze/Rev	45	49	54	61	71

Speed sensor technical data

Supply voltage ¹⁾	4.5 – 8.5 V _{DC}
Supply voltage regulated	15 V _{DC} max.
Required current	12 mA at 5 V _{DC} (no load)
Maximum current	20 mA at 5 V _{DC} and 1 Hz
Maximum frequency	15 kHz
Voltage "high"	Supply voltage -0.5 V _{DC} min.
Voltage "low"	0.5 V _{DC} max.
Temperature range	-40 to 110 °C [-40 to 230 °F]

 $^{^{1)}}$ It is not acceptable to energize the 4.5-8.5 V_{DC} speed sensor with 12 V_{DC} battery voltage; it must be energized by a regulated power supply. If it is desirable to energize the sensor with battery voltage, contact your Danfoss representative for an optional speed sensor.

Speed sensor with Turck Eurofast 4-pin connector


Pin 1 or A: Supply voltage Pin 2 or B: Direction of rotation Pin 3 or C: Speed signal, digital Pin 4 or D: Ground common

Turck Eurofast Connector Keyway (Ref)
4 pin
(Supplied connector)

IP Rating (DIN 40 050) IP 67

Mating connector
straight right angle
No.: K14956 No.: K14957
Id.-No.: 500724 Id.-No.: 500725

Speed sensor with Packard Weather-Pack 4-pin connector

Packard Weather-Pack
4 pin
(Supplied Connector)
Mating Connector
No.: K03379
Id.-No.: 505341

Contact your Danfoss representative for more information.

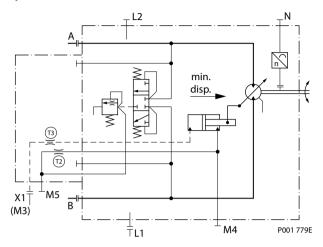
Typical control and regulator applications

Application	Control / Regulators														
		without PCOR				with PCOR				with	PCOR an	d BPD			
	N1	HZ	E1, E2, E7	EP, EQ	F1, F2	L1, L2, L7	TA	T1, T2	тн	HS	TA	T1, T2	EP, EQ	D7, D8	HS
Wheel loader ¹⁾			•		•	•	•	•	•		•	•		•	
Roller compactor ¹⁾	•	•	•		•										
Paver wheeled ¹⁾	•		•		•										
Paver tracked ¹⁾	•		•	•	•	•						•			
Sweeper ¹⁾														•	
Trencher ¹⁾	•		•												
Excavator wheeled ¹⁾														•	
Fork lift truck ¹⁾						•								•	
Agricultural ¹⁾				•		•							•	•	
Forestry ¹⁾								•		•		•	•	•	
Telehandler ¹⁾							•				•	•		•	
Railroad ¹⁾				•		•						•	•	•	
Snow groomer ¹⁾	•		•	•		•									
Snow blower ²⁾			•										•	•	
Crane ³⁾			•												

Suitable configuration

The table above is provided to assist in selecting controls and regulators for various applications. These recommendations are based on experience with a wide range of applications.

Contact your Danfoss Power Solutions representative for more information on control selection.


¹⁾ Propel function

²⁾ Blow drive function

³⁾ Winch function

Option N1NN - hydraulic two-position control for 51-1 (frame size: 060, 080, 110)

A, B = Main pressure lines

L1, L2 = Drain lines

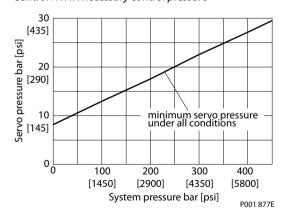
M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure

X1 (M3) = Control pressure

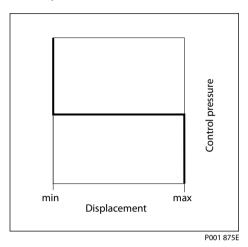
T1, T2, T3 = Optional orifices

N = Speed sensor

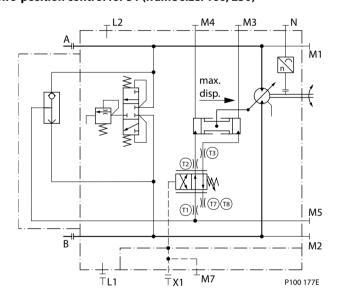

Displacement changes from maximum displacement to minimum displacement position, under load, as control pressure at port X1 (M3) is equal to low pressure or higher.

Control pressure on port X1 (M3)

No pressure on port = maximum displacement Control pressure on port = minimum displacement Maximum control pressure = 50 bar [725 psi]


The graph shows the necessary external and internal (= low system pressure) control pressure X1, which is needed to stroke the motor depending on high system pressure.

Control N1NN necessary control pressure



Control operation N1NN

Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Option HZB1 - hydraulic two-position control for 51 (frame size: 160, 250)

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, **M4** = Servo pressure

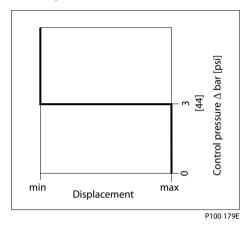
M5 = Gauge port servo supply pressure internal

M7 = Gauge port control pressure

X1 = Control pressure

T1, T2, T3, T7, T8 = Optional orifices

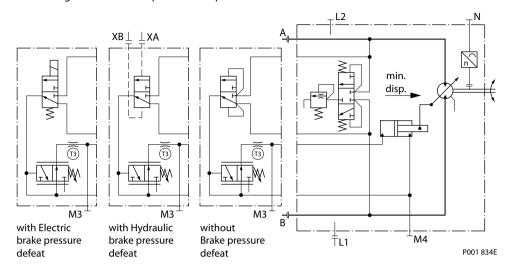
N = Speed sensor


Displacement can be changed hydraulically under load from minimum displacement to maximum displacement and vice versa by control pressure to port X1. For proportional control see *Option HZB1 – hydraulic proportional control for 51 (all frame sizes)* on page 62

Control pressure on port X1

No pressure on port = maximum displacement Control pressure on port = minimum displacement Maximum control pressure = 50 bar [725 psi] The standard control start point setting = 3 bar [44 psi]

Control operation HZB1



Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Options TA** – pressure compensator control for 51-1 (frame size: 060, 080, 110)

Circuit diagram-motor with pressure compensator control TA**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

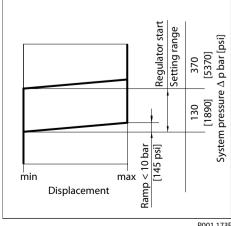
M3, M4 = Servo pressure

XA, XB = Control pressure port brake pressure defeat (BPD)

T3 = Orifice

N = Speed sensor

Displacement is regulated automatically between minimum and maximum displacement in response to system pressure.


Regulator start = minimum displacement

Regulator end = maximum displacement

Regulator start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Pressure ramp from regulator start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

Control operation TA**

P001 173E

Option TACA: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, based on the following table:

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	yes
CW	A	ХВ	no
CCW	В	XA	no
CCW	В	ХВ	yes

^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

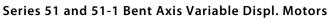
 $\Delta p_{max} = 50 \text{ bar } [725 \text{ psi}]$

Options TAD1, TAD2, TAD7: pressure compensator configuration with electric BPD

A solenoid-switched valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

The solenoid valve must be controlled by an external electric signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Solenoid	PCOR function
CW	A	energized	yes
CW	A	non energized	no
CCW	В	energized	no
CCW	В	non energized	yes

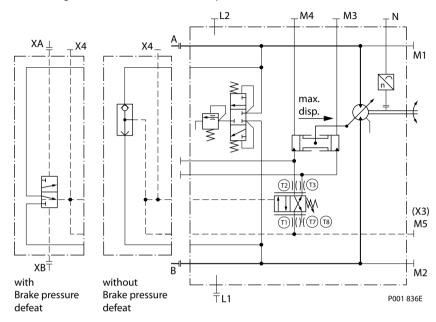

TAD* solenoid connectors

Configuration	Voltage / Electric power	Connector (supplied)	
TAD1	12 V _{DC} / 34 W	Solenoid plug face for DIN 46350 Mating connector No.: K09129 Id. No.: 514117	
TAD2	24 V _{DC} / 34 W		A B P001752
TAD7	12 V _{DC} / 34 W	AMP Junior Timer two-pin Mating connector No.: K19815 Id. No.: 508388	P001751

Option TAC2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
TAC2	A and B	yes



Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Options TA** – pressure compensator controls for 51 (frame size 160, 250)

Circuit Diagram-Motor with Pressure Compensator Control TA**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 (X3) = Gauge port servo supply

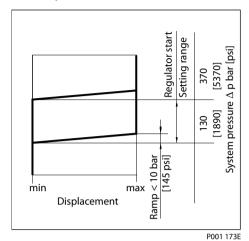
XA, XB = Control pressure ports, brake pressure defeat

X4 = Gauge port pressure compensator

T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Displacement is regulated automatically between minimum and maximum displacement in response to system pressure.


Regulator start = minimum displacement Regulator end = maximum displacement

Regulator start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Pressure ramp from regulator start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

Control operation TA**

Option TACO: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table.

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	XB	no

^{*} Differencial control pressure between port XA/XB:

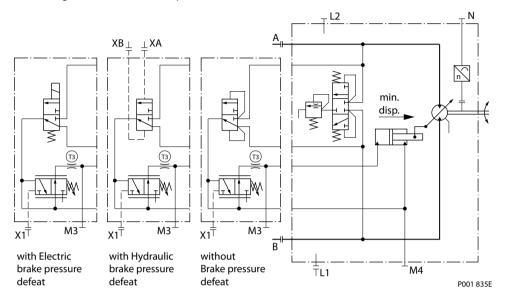
 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Option TAC2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
TAC2	A and B	yes


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options TH** - hydraulic two-position control for 51-1 (frame size: 060, 080, 110)

Circuit diagram – motor with two-position control TH**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 (X3) = Gauge port servo supply

XA, XB = Control pressure ports, brake pressure defeat

X1 = Hydraulic two-position signal

X4 = Gauge port pressure compensator

T1, T2, T3, T7, T8 = Optional orifices

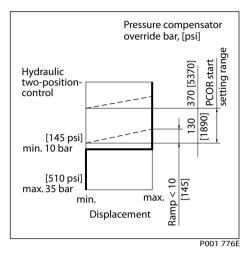
N = Speed sensor

Displacement can be changed hydraulically under load from minimum displacement to maximum displacement and vice versa.

Pressure on port X1 must be equal to the pressure of the motor case \pm 0.2 bar [3.0 psi] this keeps the motor at minimum displacement.

Pressure from 10 bar [145 psi] to 35 bar [510 psi] above case pressure on port X1 strokes the motor to maximum displacement.

Pressure Compensator OverRide (PCOR)


The control can be overridden by PCOR using high loop pressure.

When the PCOR activates, the motor displacement increases toward maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control operation TH**

Option THCA: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls. The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, based on the following table:

Pressure compensator operation

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	yes
CW	A	ХВ	no
CCW	В	XA	no
CCW	В	ХВ	yes

^{*} Differencial control pressure between port XA / XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}];$ $\Delta p_{max} = 50 \text{ bar } [725 \text{ psi}]$

Options THD1, THD2, THD7: pressure compensator configuration with electric BPD

A solenoid-switched valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. The solenoid valve must be controlled by an external electric signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Solenoid	PCOR function
CW	A	energized	yes
CW	A	non energized	no
CCW	В	energized	no
CCW	В	non energized	yes

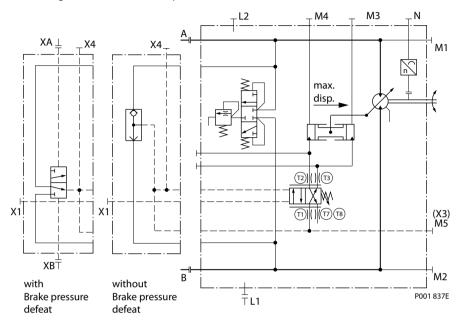
THD* solenoid connectors

Configuration	Voltage / Electric power	Connector (supplied	d)
THD1	12 V _{DC} / 34 W	Solenoid plug face for DIN 46350	
THD2	24 V _{DC} / 34 W	Mating connector No.: K09129 Id. No.: 514117	A B P001752
THD7	12 V _{DC} / 34 W	AMP Junior Timer two-pin Mating connector No.: K19815 Id. No.: 508388	P001751

Option THC2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
THC2	A and B	yes


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options TH** - hydraulic two-position control for 51 (frame size 160, 250)

Circuit diagram – motor with two-position control TH**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 (X3) = Gauge port servo supply

XA, XB = Control pressure ports, brake pressure defeat

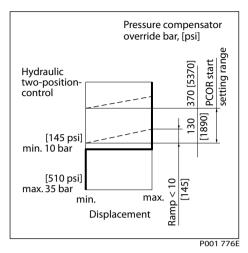
X1 = Hydraulic two-position signal

X4 = Gauge port pressure compensator

T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Pressure Compensator OverRide (PCOR)


The control can be overridden by PCOR using high loop pressure.

When the PCOR activates, the motor displacement increases toward maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control operation TH**

Option THCO: pressure compensator configuration with hydraulic BPD

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Pressure compensator operation

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	ХВ	no

^{*} Differencial control pressure between port XA / XB:

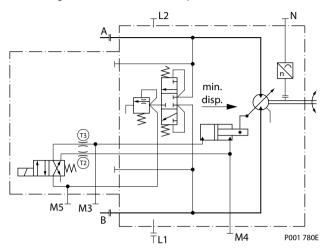
 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Option THC2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
THC2	A and B	yes


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

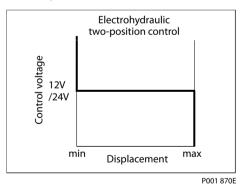
Options E1B1, E2B1, E7B1 – electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)

Circuit diagram - motor with EH two-position control E1B1, E2B1, E7B1

A, B = Main pressure lines

L1, L2 = Drain lines

M3, M4 = Servo pressure


M5 = Gauge port servo supply pressure internal

T2, T3 = Optional orifices

N = Speed sensor

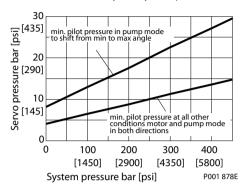
Displacement can be changed electrohydraulically under load from maximum displacement to minimum displacement and vice versa, by using a built-in solenoid valve.

Control operation E1B1, E2B1, E7B1

Options:

Solenoid off = max. displacement

Solenoid on = min. displacement

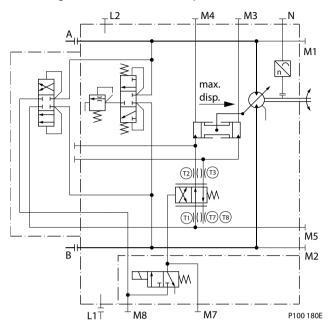

Pilot pressure for solenoid:

internal = low pressure

The graph shows the necessary servo pressure (= low pressure), which is needed to stroke the motor, depending on high system pressure and the pump or motor mode.

Control E*B1 necessary low system pressure

E1B1, E2B1, E7B1 solenoid connectors


Configuration	Voltage / Electric power	Connector (supplie	d)
E1B1	12 V _{DC} / 34 W	Solenoid plug face for DIN 46350	
E2B1	24 V _{DC} / 34 W	Mating connector No.: K09129 Id. No.: 514117	A B P001752
E7B1	12 V _{DC} / 34 W	AMP Junior Timer two-pin Mating connector No.: K19815 Id. No.: 508388	P001751

Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Options E1A5, E2A5 – electrohydraulic two-position control for 51 (frame size 160, 250)

Circuit diagram - motor with control options: E1A5, E2A5

Ports:

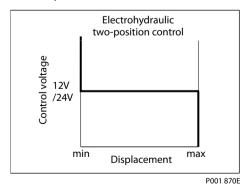
A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure, internal


M7, M8 = Gauge port control pressure, internal

T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Displacement can be changed electrohydraulically under load from maximum displacement to minimum displacement and vice versa, by using a built-in solenoid valve.

Control operation E1A5, E2A5

Options:

Solenoid off = max. displacement

Solenoid on = min. displacement

Pilot pressure for solenoid:

internal = low pressure

E1A5, E2A5 solenoid connectors

Configuration	Voltage / Electric power	Connector (Supplied	i)
E1A5	12 V _{DC} / 14.7 W	Solenoid plug face for DIN 46350	
E2A5	24 V _{DC} / 14.7 W	Mating connector No.: K09129 Id. No.: 514117	A B P001752

Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options F1B1, F2B1 - electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)

Circuit diagram – motor with control options: F1B1, F2B1

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M3, M4 = Servo pressure


M5 = Gauge port servo supply pressure internal

T2, T3 = Optional orifices

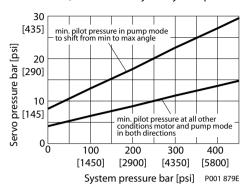
N = Speed sensor

Displacement can be changed electrohydraulically under load from maximum displacement to minimum displacement and vice versa, by using a built-in solenoid valve.

Control operation F1B1, F2B1

Options:

Solenoid off = min. displacement Solenoid on = max. displacement


Pilot pressure for solenoid:

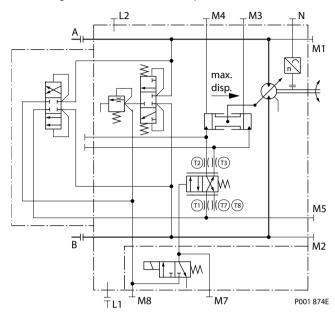
internal = low pressure

The graph shows the necessary servo pressure (= low pressure), which is needed to stroke the motor, depending on high system pressure and the pump or motor mode.

Control F1B1, F2B1 necessary low system pressure

F1B1, F2B1 solenoid connectors

Configuration	Voltage / Electric power	Connector (Supplied	i)
F1B1	12 V _{DC} / 14.7 W	Solenoid plug face for DIN 46350	
F2B1	24 V _{DC} / 14.7 W	Mating connector No.: K09129 Id. No.: 514117	A B P001752


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options F1A5, F2A5 - electrohydraulic two-position control for 51 (frame size 160, 250)

Circuit diagram - motor with control options: F1A5, F2A5

Ports:

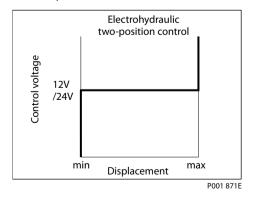
A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure, internal


M7, M8 = Gauge port control pressure, internal

T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Displacement can be changed electrohydraulically under load from maximum displacement to minimum displacement and vice versa, by using a built-in solenoid valve.

Control operation F1A5, F2A5

Options:

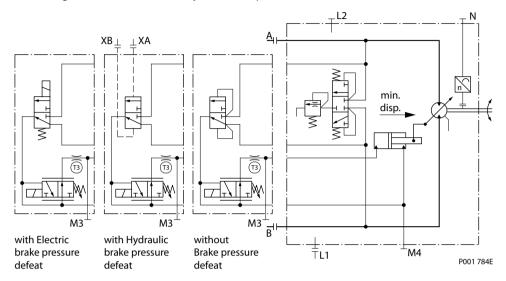
Solenoid off = min. displacement Solenoid on = max. displacement

Pilot pressure for solenoid:

internal = low pressure

F1A5, F2A5 solenoid connectors

Configuration	Voltage / Electric power	Connector (Supplied	i)
F1A5	12 V _{DC} / 14.7 W	Solenoid plug face for DIN 46350 Mating connector No.: K09129 Id. No.: 514117	
F2A5	24 V _{DC} / 14.7 W		P001752


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options T1**, T2**, T7** – electrohydraulic two-position control for 51-1 (frame size 060, 080, 110)

Circuit diagram – motor with electrohydraulic two-position control T1**, T2**, T7**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M3, M4 = Gauge port servo pressure

XA, XB = Control pressure ports, brake pressure defeat

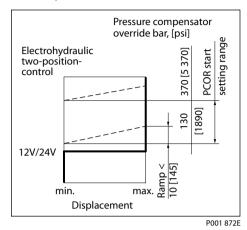
T3 = Optional orifices

N = Speed sensor

Displacement can be changed electrohydraulically under load from minimum displacement to maximum displacement and vice versa, by using a solenoid. When the solenoid is energized the motor has maximum displacement and the pressure compensator does not function.

Solenoid not energized = minimum displacement

Solenoid energized = maximum displacement


Pressure Compensator Override (PCOR)

The control can be overridden by PCOR using high loop pressure. When the PCOR activates, the motor displacement increases toward maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control operation T1**, T2**, T7**

Option T*CA: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	А	XA	yes
CW	A	ХВ	no
CCW	В	XA	no
CCW	В	ХВ	yes

^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Options T*D1, T*D2, T* D7: pressure compensator configuration with electric BPD

A solenoid-switched valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

The solenoid valve must be controlled by an external electric signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Solenoid	PCOR function
CW	A	energized	yes
CW	A	non energized	no
CCW	В	energized	no
CCW	В	non energized	yes

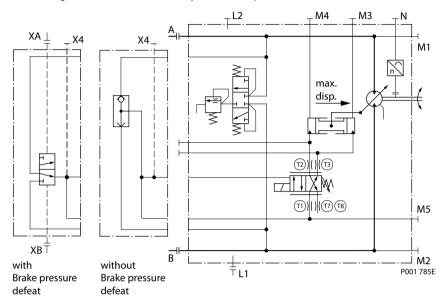
T1D1, T2D2, T7D7 solenoid connectors

Configuration	Voltage / Electric power	Connector (Supplied	(k
T1D1	12 V _{DC} / 34 W	Solenoid plug face for DIN 46350 Mating connector No.: K09129	
T2D2	24 V _{DC} / 34 W	ld. No.: 514117	A B P001752
T7D7	12 V _{DC} / 34 W	AMP Junior Timer two-pin Mating connector No.: K19815 Id. No.: 508388	P001751

Option T*C2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
T*C2	A and B	yes


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options T1**, T2** – electrohydraulic two-position control for 51 (frame size 160, 250)

Circuit diagram – motor with electrohydraulic two-position control T1**, T2**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply

XA, XB = Control pressure ports, brake pressure defeat

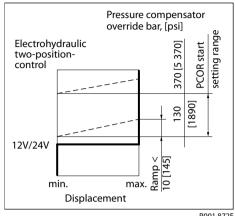
T1, T2, T3, T7, T8 = Optional orifices

 $\mathbf{N} =$ Speed sensor

Displacement can be changed electrohydraulically under load from minimum displacement to maximum displacement and vice versa, by using a solenoid. When the solenoid is energized the motor has maximum displacement and the pressure compensator does not function.

Solenoid not energized = minimum displacement

Solenoid energized = maximum displacement


Pressure Compensator OverRide (PCOR)

The control can be overridden by PCOR using high loop pressure. When the PCOR activates, the motor displacement increases toward maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control operation T1**, T2**

P001 872E

Option T*CO: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	ХВ	no

^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

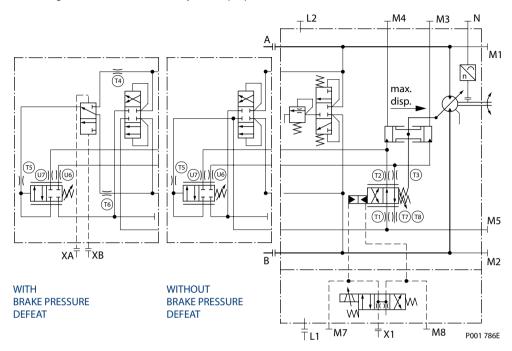
 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Option T*C2: pressure compensator configuration without Brake Pressure Defeat

Pressure compensator functions when the motor is running in motor mode as well as in pump (deceleration) mode.

Configuration option	High pressure port	PCOR function
T*C2	A and B	yes

T1C2, T2C2 solenoid connectors


Configuration	Voltage / Electric power	Connector (Supplied	l)
T1C2 T2C2	12 V _{DC} / 14.7 W 24 V _{DC} / 14.7 W	Solenoid plug face for DIN 46350 Mating connector No.: K09129 Id. No.: 514117	A B P001752

Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Options EP**, EQ** – electrohydraulic proportional control for 51 (all frame sizes)

Circuit diagram – motor with electrohydraulic proportional control EP**, EQ**

Ports:

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure internal

M7, M8 = Gauge port control pressure internal

X1 = Port for control supply pressure external

XA, XB = Control pressure ports, BPD

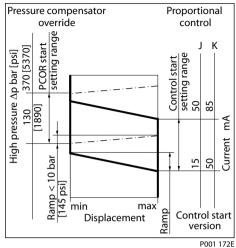
T1, T2, T3, T4, T5, T6, T7, T8, U6, U7 = Optional orifices

N = Speed sensor

Displacement can be changed under load in response to an electrical signal between maximum displacement and minimum displacement and vice versa.

Control start = maximum displacement

Control end = minimum displacement


Control supply pressure (port X1)

 $p_{min} = 20 \text{ bar } [290 \text{ psi}]$

 $p_{\text{max allowable}} = 70 \text{ bar } [1015 \text{ psi}]$

Control operation EP**, EQ**

Control setting options

Туре	Start current (adjustable)*	Standard setting: control start	Ramp**	Coil wiring
JY	15 to 50 mA	30 = 30 mA	70 mA	
JW	13 10 30 111A		95 mA	Single
KY	50 to 85 mA	70 70 4	70 mA	Coil resistance = 26 Ω
KW	1 50 to 65 mA	70 = 70 mA	95 mA	

^{*} Max. current = 250 mA

Connectors

Packard Weather-Pack 4 pin (Supplied Connector)

> **Mating Connector** No.: K03384 Id.-No.: 712208

Wiring (maximum to minimum displacement)

Coil wiring	Positive voltage on pin	Ground on pin
Single coil	В	Α
Single coil (alt.)	D	С

Pressure Compensator Override (PCOR)

The control can be overridden by PCOR using high loop pressure.

When the PCOR activates, the motor displacement increases to maximum.

Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

^{**} from max. to min. displacement; full stroke current.

Configuration option	PCOR at port	BPD function
EPA1/EQA1	A and B	with
EPA2/EQA2	A and B	without

Options EPA1, EQA1: pressure compensator configuration with Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Pressure compensator operation

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	ХВ	no

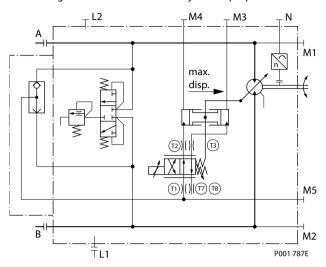
^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Options EPA2, EQA2: pressure compensator configuration without Brake Pressure Defeat

The pressure compensator override functions when the motor is running in motor mode as well as in pump (deceleration) mode.


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options L1B1, L2B1, L7B1 – electrohydraulic proportional control for 51 (all frame sizes)

Circuit diagram – motor with electrohydraulic propor. control L1B1, L2B1, L7B1

Ports:

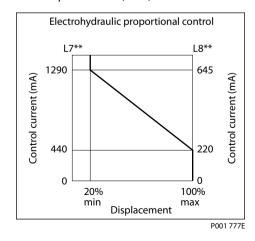
A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure internal


T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Displacement can be changed electrohydraulically under load in response to an electrical signal from minimum displacement to maximum displacement and vice versa. The displacement changes proportional to the electrical signal. The electrical signal must be a pulse-width modulated (PWM) signal, (f = 100...200 Hz).

Control start = maximum displacement Control end = minimum displacement

Control operation L1**, L2**, L7**

L1B1, L2B1, L7B1 solenoid connectors

Solenoid plug face DIN 46350 (Supplied)	AMP Junior Timer two-pin (Supplied)
Mating connector No.: K09129 Id. No.: 514117	P001751 Mating connector No.: K19815 Id. No.: 508388

Solenoid data

Configuration	Voltage	Nominal	Control current			Connector
		resistance 20 °C	Start	End	Max.	
L1B1	12 V _{DC}	5.7 Ω	440 mA	1290 mA	1500 mA	DIN 46350
L7B1	12 V _{DC}	3.7 12	440 IIIA	1290111A	1300111A	AMP Junior Timer
L2B1	24 V _{DC}	21.3 Ω	220 mA	645 mA	750 mA	DIN 46350

Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

Options D7M1, D8M1 - electrohydraulic proportional control with PCOR and hydraulic BPD for 51 (all frame sizes)

Circuit diagram - motor with EH prop. control D7M1, D8M1

Ports:

 \mathbf{A} , \mathbf{B} = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

X3 (M5) = Servo pressure supply

M7 = Gauge port control pressure

XA, XB = Control pressure ports, hydraulic BPD

T1, T2, T3, T4, T6, T7, T8, U7 = Optional orifices

N = Speed sensor

Displacement can be changed electrohydraulically under load in response to an electrical signal from minimum displacement to maximum displacement and vice versa. The displacement changes proportional to the electrical signal. The electrical signal must be a pulse-width modulated (PWM) signal, (f = 100...200 Hz).

Solenoid not energized = maximum displacement

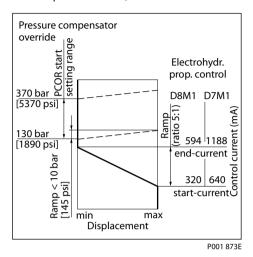
Solenoid energized = minimum displacement

Servo pressure supply = external pressure at port X3

Min. pressure = 25 bar [360 psi]

Max. pressure = 50 bar [725 psi]

Pressure Compensator Override (PCOR)


The control can be overridden by PCOR using high loop pressure.

When the PCOR activates, the motor displacement increases to maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi]. This ensures optimal power utilization throughout the entire displacement range of the motor.

PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control operation D7M1, D8M1

Options D7M1, D8M1: pressure compensator configuration with hydraulic Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	ХВ	no

^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

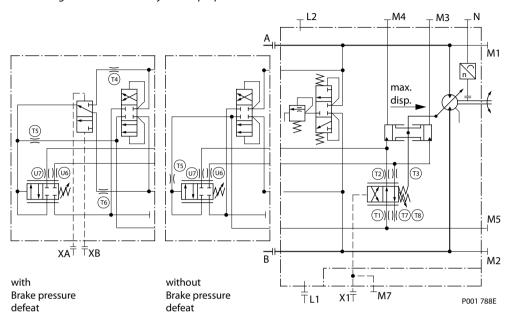
D7M1, D8M1 solenoid connector

Solenoid connector

Plug face DIN 46350 (Supplied) Mating connector No.: K09129

Id. No.: 514117

Configuration	Voltage	Nominal		Control curren	nt	Connector
		resistance 20 °C	Start	End	Max.	
D7M1	12 V _{DC}	5.7 Ω	640 mA	1188 mA	1500 mA	AMP Junior Timer
D8M1	24 V _{DC}	21.2 Ω	320 mA	594 mA	750 mA	two-pin


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Options HS** – hydraulic proportional control for 51 (all frame sizes)

Circuit diagram – motor with hydraulic proportional control HS**

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure

M7 = Gauge port control pressure

 $\mathbf{X1} = \mathbf{Port} \ \mathbf{for} \ \mathbf{control} \ \mathbf{supply} \ \mathbf{pressure} \ \mathbf{external}$

XA, XB = Control pressure ports, BPD

T1, T2, T3, T4, T5, T6, T7, T8, U6, U7 = Optional orifices

N = Speed sensor

Displacement can be changed in response to a hydraulic signal under load between maximum displacement and minimum displacement and vice versa.

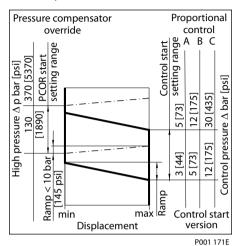
Control start = maximum displacement Control end = minimum displacement

Control pressure (Port X1)

External = absolute pressure

Control start setting range (pressure above case pressure)		
p _{start} 3 to 5 bar [44 to 73 psi]		
	5 to 12 bar [73 to 175 psi]	
12 to 30 bar [175 to 435 psi]		
P _{max allowable} control start pressure + 50 bar [725 psi]		

Control ramp	
From 100% to 20% displacement	7 bar [102 psi]
From 100% to 20% displacement	14 bar [203 psi]


Pressure Compensator OverRide (PCOR)

The control can be overridden by PCOR using high loop pressure. When the PCOR activates, the motor displacement increases to maximum. Pressure ramp from PCOR start pressure (with motor at minimum displacement) until maximum displacement is reached is less than 10 bar [145 psi] . This ensures optimal

power utilization throughout the entire displacement range of the motor. PCOR start pressure is adjustable from 130 to 370 bar [1890 to 5370 psi].

Control Operation HS**

 Configuration
 PCOR at port
 BPD function

 HSA1
 A and B
 with

 HSA2
 A and B
 without

Option HSA1: pressure compensator configuration with Brake Pressure Defeat

A shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down. Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The shuttle valve must be controlled by a 2-line external signal, based on direction of motor rotation, see the following table:

Motor rotation	High pressure port	Control pressure on port*	PCOR function
CW	A	XA	no
CW	A	ХВ	yes
CCW	В	XA	yes
CCW	В	XB	no

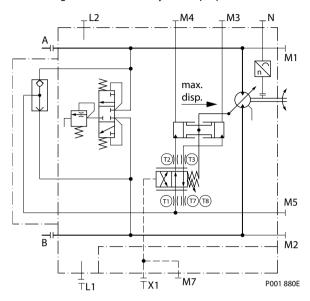
^{*} Differencial control pressure between port XA/XB:

 $\Delta p_{min} = 0.5 \text{ bar } [7 \text{ psi}]$

 $\Delta p_{\text{max}} = 50 \text{ bar } [725 \text{ psi}]$

Option HSA2: pressure compensator configuration without Brake Pressure Defeat

The pressure compensator override functions when the motor is running in motor mode as well as in pump (deceleration) mode.


Not all control options are shown in this Technical Information.

Contact your Danfoss representative for special control functions.

Option HZB1 - hydraulic proportional control for 51 (all frame sizes)

Circuit diagram – motor with hydraulic propor. control HZB1

A, B = Main pressure lines

L1, L2 = Drain lines

M1, M2 = Gauge port for A and B

M3, M4 = Gauge port servo pressure

M5 = Gauge port servo supply pressure internal

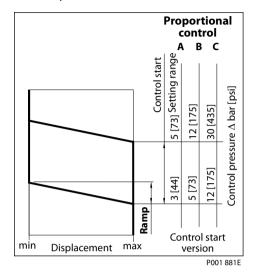
M7 = Gauge port control pressure

X1 = Control pressure port

T1, T2, T3, T7, T8 = Optional orifices

N = Speed sensor

Displacement can be changed in response to a hydraulic signal under load between maximum displacement and minimum displacement and vice versa.


Control start = maximum displacement Control end = minimum displacement

Control pressure on port X1

External = absolute pressure

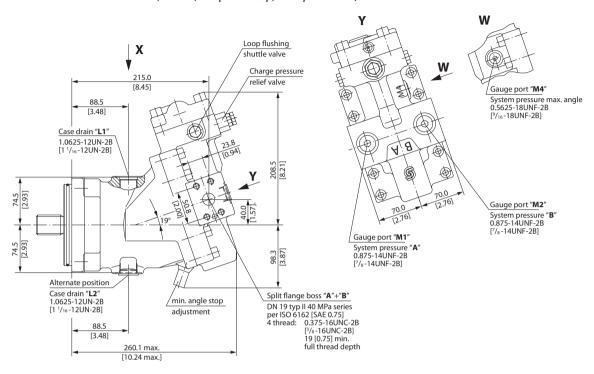
Control Operation HZB1

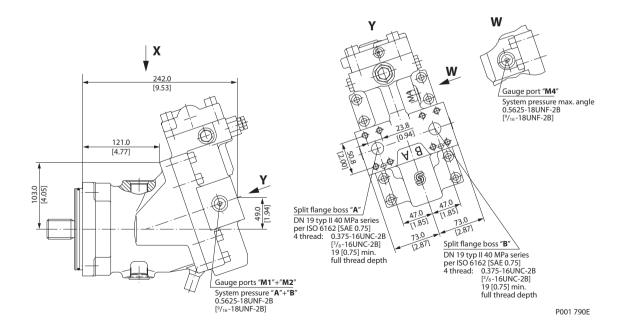
 Control start setting range (pressure above case pressure)

 P_{Start}
 3 to 5 bar [44 to 73 psi]

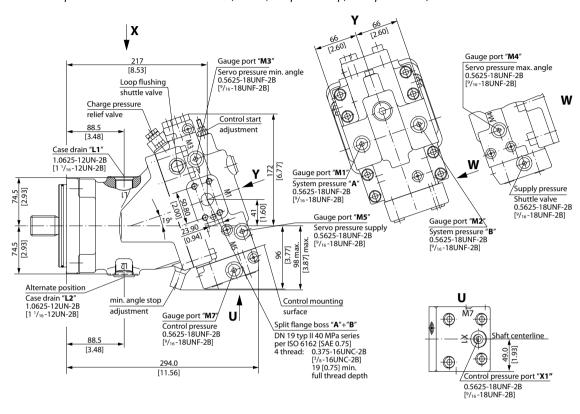
 5 to 12 bar [73 to 175 psi]
 12 to 30 bar [175 to 435 psi]

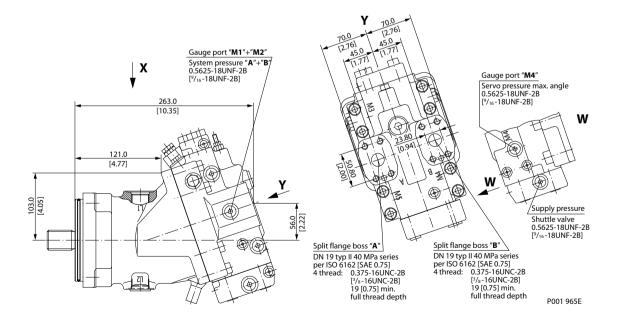
 P_{max allowable}
 control start pressure + 50 bar [725 psi]

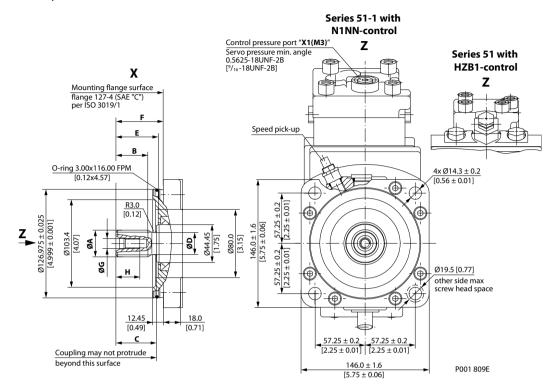

Control ramp	
From 100% to 20% displacement	7 bar [102 psi]
From 100% to 20% displacement	14 bar [203 psi]


Not all control options are shown in this Technical Information. Contact your Danfoss representative for special control functions.

SAE flange design per ISO 3019/1


51V060-1 Two Position Control, N1NN (Side port on top, Axial port below)




51V060 Proportional and Two Position Control, HZB1 (Side port on top, Axial port below)

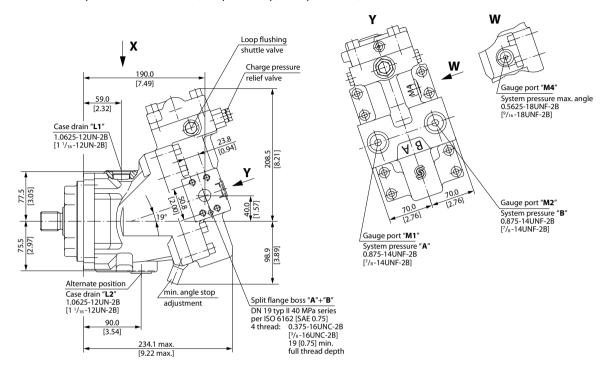
Shaft options - 51V060-1 and 51V060

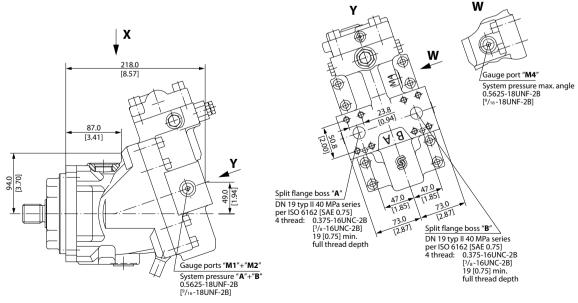
Shaft spline data - mm [in]

Shaft option	S 1	C6
Number of teeth	14	21
Pitch	12/24	16/32
Pitch Ø	29.633 [1.167]	33.337 [1.312]
ØA	31.15 [1.23]	34.43 [1.36]
ØD	25.8 [1.02]	30.0 [1.18]
Pressure angle	30°	
В	37.5 [1.476]	
С	47.5±0.5 [1.87]	
Е	50.3±1.2 [1.98]	
F	55.5±0.7 [2.19]	
Н	28.0 [1.1]	
Spline	ANSI B92.1-1970, class 5, flat root side fit	
ØG	0.4375-14UNC-2B [7/16-14UNC-2B]; allowed torque in thread max. 91 N•m [805 lbf•in]	

Flow into port **A** results in **CW** rotation of output shaft.

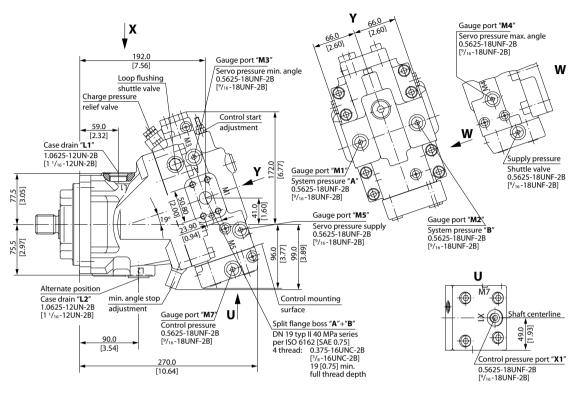
Flow into port **B** results in **CCW** rotation of output shaft.

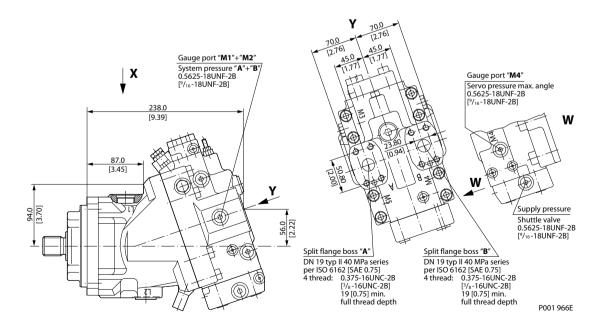

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.


Splite flange boss A and B per ISO 6162 is identical with high pressure series SAEJ518 code 62 (6000 psi). Contact your Danfoss representative for specific installation drawings.

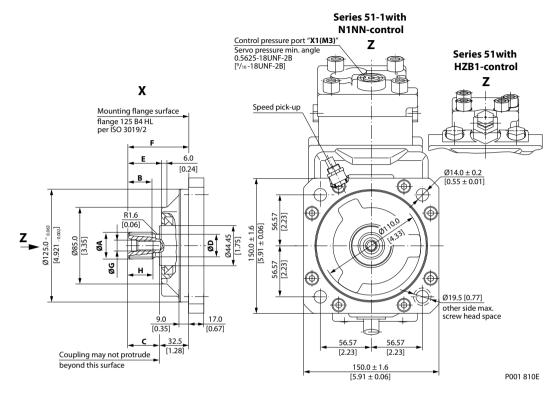
DIN flange design per ISO 3019/2

51D060-1 two position control, N1NN (Side port on top, Axial port below)





P001 791E


51D060 proportional and two position control, HZB1 (Side port on top, Axial port below)

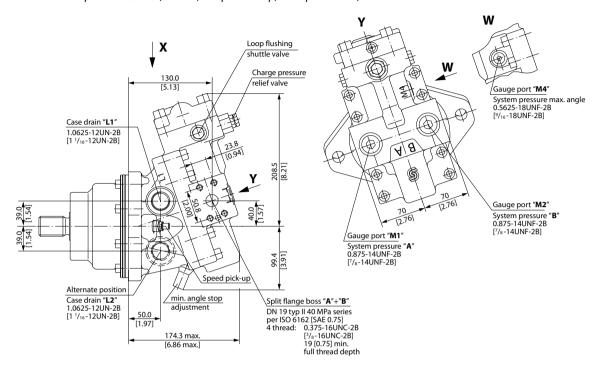
Shaft options - 51D060-1 and 51D060

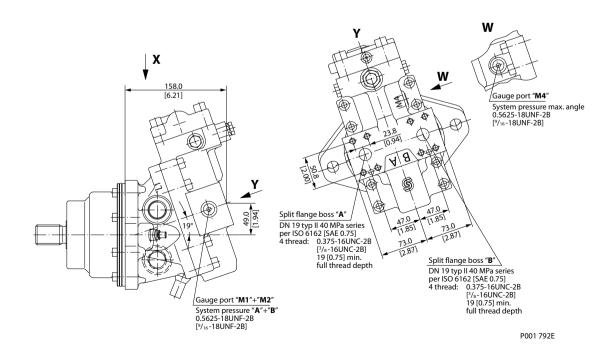
Shaft spline data - mm [in]

Shaft option	D1	D2
Number of teeth	14	16
Spline	W30x2x30x14x9g, side fit DIN 5480	W35x2x30x16x9g side fit DIN 5480
Pitch Ø	28.0 [1.102]	32.0 [1.260]
Ø A	29.6 [1.17]	34.6 [1.36]
В	27.0 [1.06]	32.0 [1.260]
С	35.0±0.5 [1.38]	40.0±0.5 [1.58]
ØD	25.0 [0.98]	30.0 [1.18]
E	37.5±1.1 [1.48]	42.5±1.1 [1.67]
F	67.5±0.6 [2.66]	72.5±0.6 [2.85]
Н	25.0 [0.98]	25.0 [0.98]
ØG	M10x1.5 allowed torque in thread max. 67 N·m [593 lbf·in]	

Flow into port **A** results in **CW** rotation of output shaft.

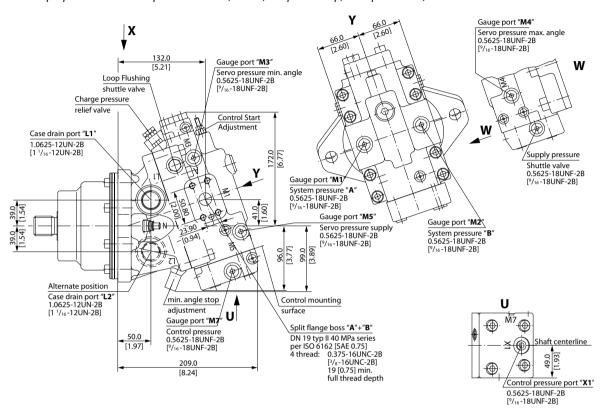
Flow into port **B** results in **CCW** rotation of output shaft.

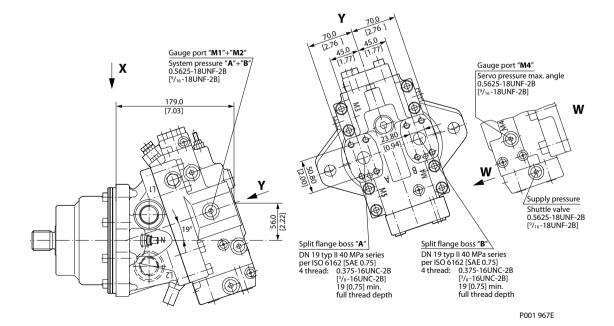

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.


Splite flange boss A and B per ISO 6162 is identical with high pressure series SAEJ518 code 62 (6000 psi). Contact your Danfoss representative for specific installation drawings.

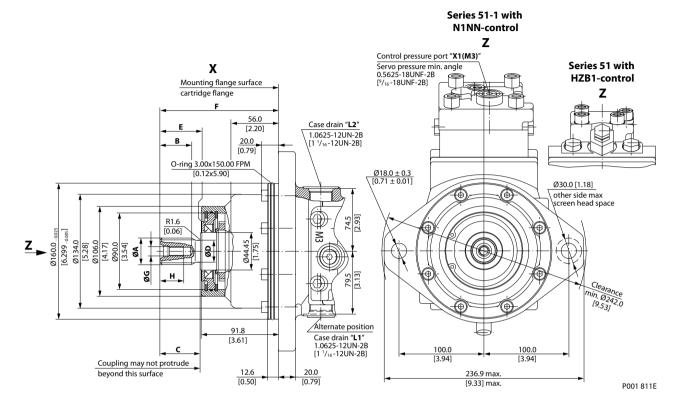
Cartridge flange

51C060-1 two-position control, N1NN (Side port on top, Axial port below)





70 | © Danfoss | October 2017


51C060 proportional and two-position control, HZB1 (Side port on top, Axial port below)

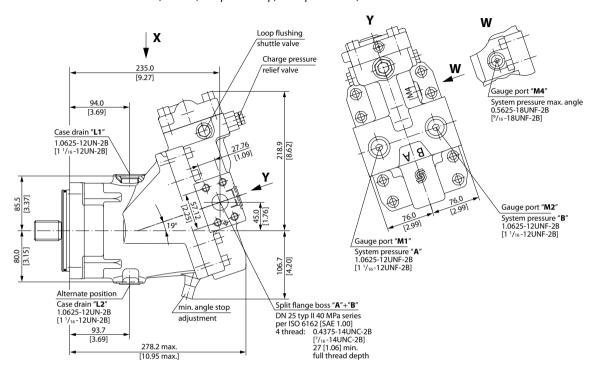
Shaft options - 51C060-1 and 51C060

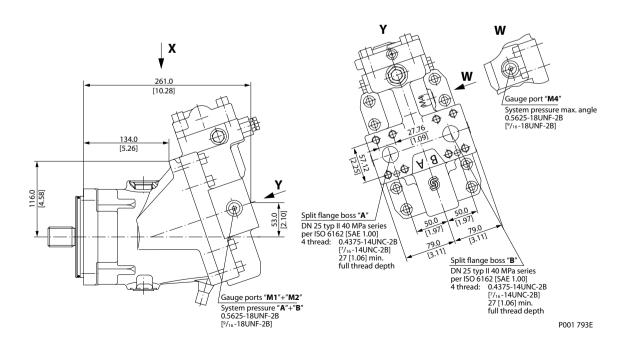
Shaft spline data - mm [in]

Shaft option	D1	D2
Number of teeth	14	16
Spline	W30x2x30x14x9g, side fit DIN 5480	W35x2x30x16x9g side fit DIN 5480
Pitch Ø	28.0 [1.102]	32.0 [1.26]
ØA	29.6 [1.17]	34.6 [1.36]
В	27.0 [1.06]	32.0 [1.26]
С	35.0±0.5 [1.38]	40.0±0.5 [1.58]
ØD	25.0 [0.98]	30.0 [1.18]
Е	36.8±1.4 [1.45]	41.8±1.4 [1.65]
F	127.2±0.6 [5.0]	132.2±0.6 [5.21]
Н	25.0 [0.98]	25.0 [0.98]
ØG	M10x1.5 allowed torque in thread max. 67 N·m [593 lbf·in]	

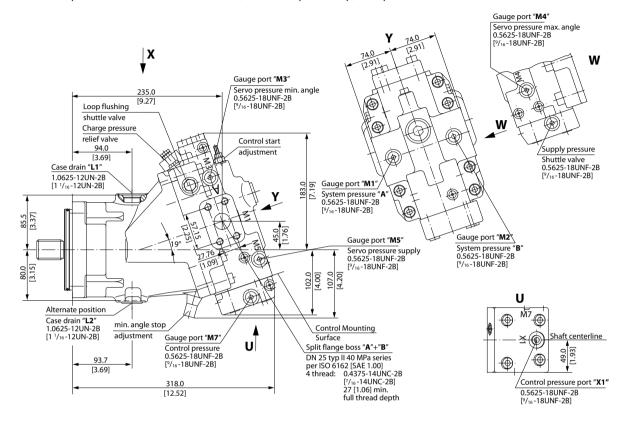
Flow into port **A** results in **CW** rotation of output shaft.

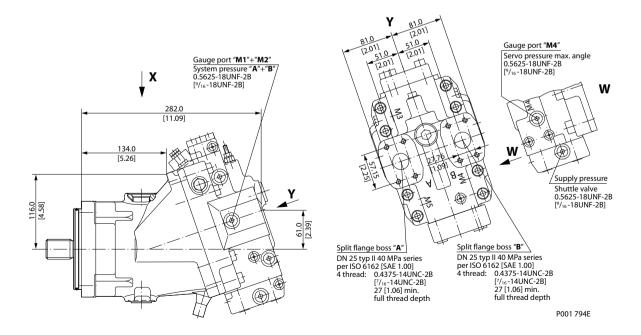
Flow into port **B** results in **CCW** rotation of output shaft.

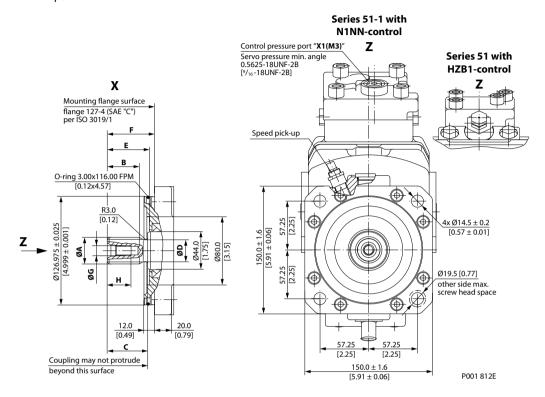

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.


Splite flange boss A and B per ISO 6162 is identical with high pressure series SAEJ518 code 62 (6000 psi). Contact your Danfoss representative for specific installation drawings.

SAE flange design per ISO 3019/1


51V080-1 Two Position Control, N1NN (Side port on top, Axial port below)



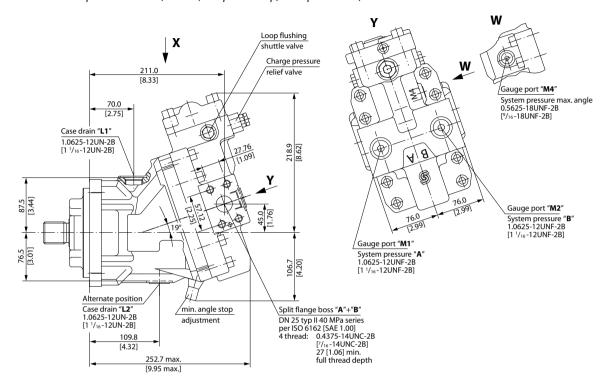

51V080 Proportional and Two-Position Control, HZB1 (Side port on top, Axial port below)

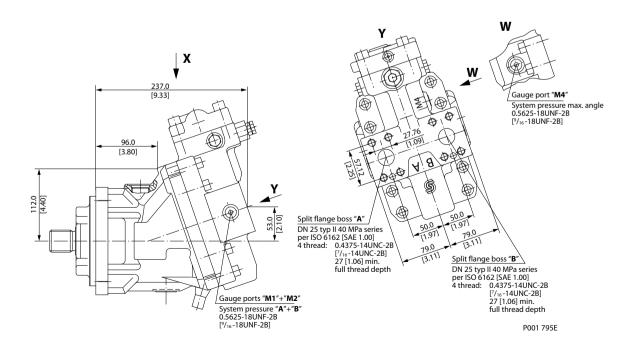
Shaft Options - 51V080-1 and 51V080

Shaft spline data - mm [in]

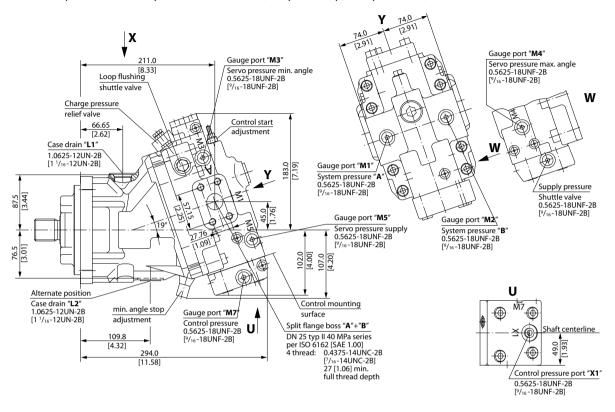
Shaft option	S1	C7		
Number of teeth	14	23		
Pitch	12/24	16/32		
Pitch Ø	29.633 [1.167]	36.513 [1.438]		
ØA	31.15 [1.23]	37.61 [1.481]		
ØD	25.8 [1.02]	32.0 [1.26]		
Pressure angle	30°			
В	37.5 [1.476]			
С	47.5±0.5 [1.87]			
E	49.5±1.1 [1.95]			
F	55.5±0.7 [2.19]			
Н	28.0 [1.1]			
Spline	ANSI B92.1-1970, class 5, flat root side fit			
ØG	0.4375-14UNC-2B [7/16-14UNC-2B]; allowed torque in thread max. 91 N·m [805 lbf·in]			

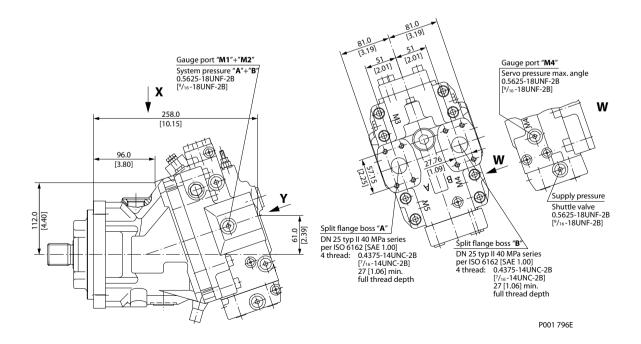
Flow into port **A** results in **CW** rotation of output shaft.

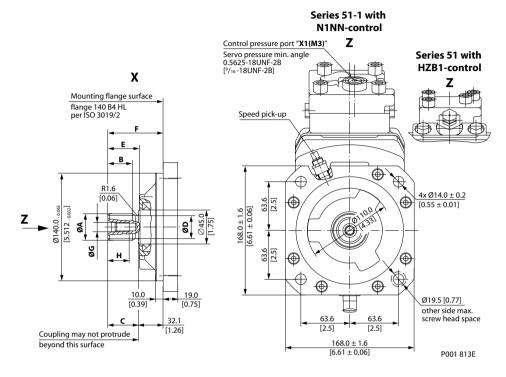

Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

DIN flange design per ISO 3019/2


51D080-1 two position control, N1NN (Side port on top, Axial port below)




51D080 Proportional and two position control, HZB1 (Side port on top, Axial port below)

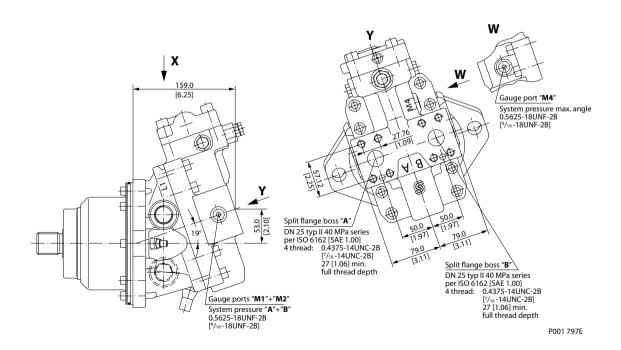
Shaft Options - 51D080-1 and 51D080

Shaft spline data - mm [in]

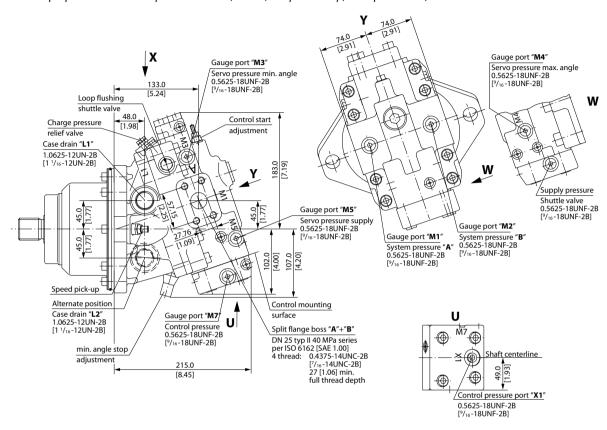
Shaft option	D2	D3	
Number of teeth	16	18	
Spline	W35x2x30x16x9g side fit DIN 5480	W40x2x30x18x9g side fit DIN 5480	
Pitch Ø	32.0 [1.260]	36.0 [1.417]	
ØA	34.6 [1.36]	39.6 [1.56]	
В	32.0 [1.26]	37.0 [1.46]	
С	40.0±0.5 [1.58]	45.0±0.5 [1.77]	
ØD	30.0 [1.18]	35.0 [1.38]	
Е	42.5±1.1 [1.67]	47.3±1.1 [1.86]	
F	72.5±0.6 [2.85]	85.3±0.6 [3.36]	
Н	25.0 [0.98] 25.0 [0.98]		
ØG	M10x1.5 allowed torque in thread max. 67 N·m [593 lbf·in]		

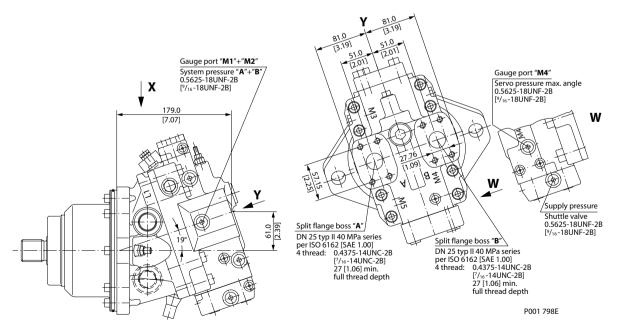
Flow into port **A** results in **CW** rotation of output shaft.

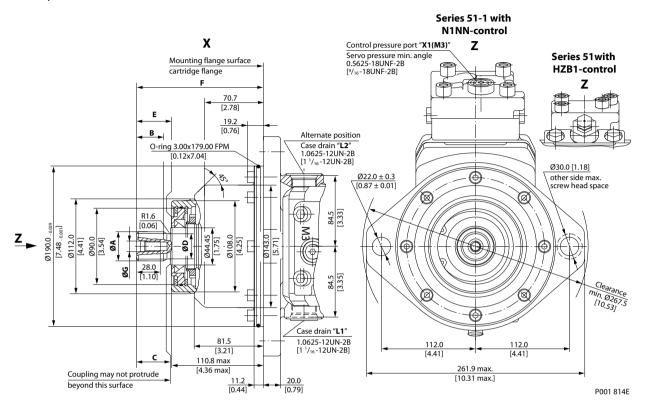
Flow into port ${\bf B}$ results in ${\bf CCW}$ rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

Cartridge flange


51C080-1 two-position control, N1NN (Side port on top, Axial port below)



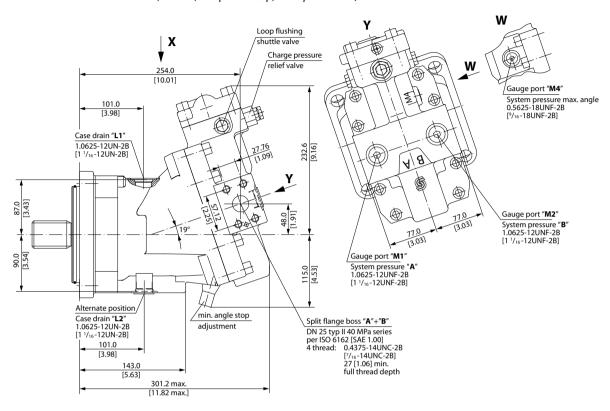

51C080 proportional and two-position control, HZB1 (Side port on top, Axial port below)

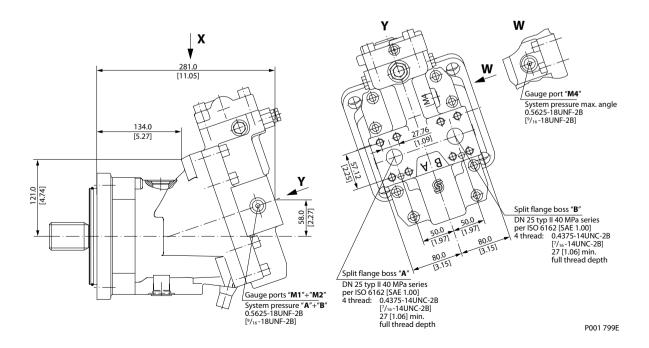
Shaft options - 51C080-1 and 51C080

Shaft spline data - mm [in]

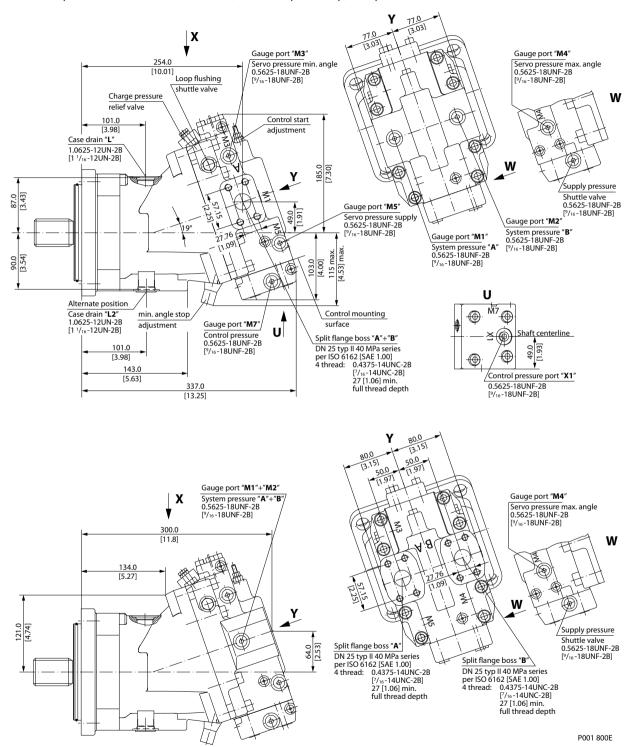
Shaft option	D2	D3	
Number of teeth	16	18	
Spline	W35x2x30x16x9g side fit DIN 5480	W40x2x30x18x9g side fit DIN 5480	
Pitch Ø	32.0 [1.260]	36.0 [1.417]	
ØA	34.6 [1.36]	39.6 [1.56]	
В	32.0 [1.26]	37.0 [1.46]	
С	40.0±0.5 [1.58]	45.0±0.5 [1.77]	
ØD	30.0 [1.18]	35.0 [1.38]	
E	41.55±1.4 [1.64]	46.55±1.4 [1.83]	
F	150.4±0.6 [5.92]	155.4±0.6 [6.12]	
Н	25.0 [0.98] 25.0 [0.98]		
ØG	M10x1.5 allowed torque in thread max. 67 N·m [593 lbf·in]		

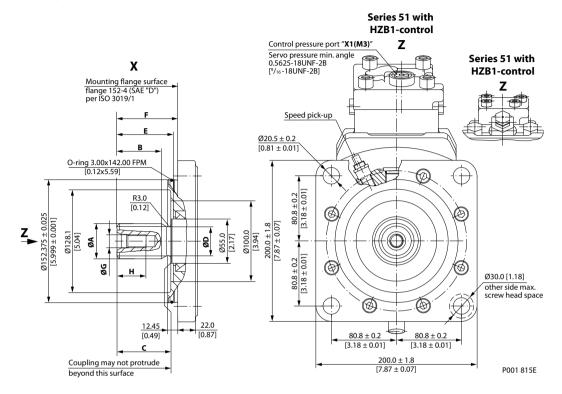
Flow into port \boldsymbol{A} results in \boldsymbol{CW} rotation of output shaft.


Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

SAE flange design per ISO 3019/1


51V110-1 Two Position Control, N1NN (Side port on top, Axial port below)



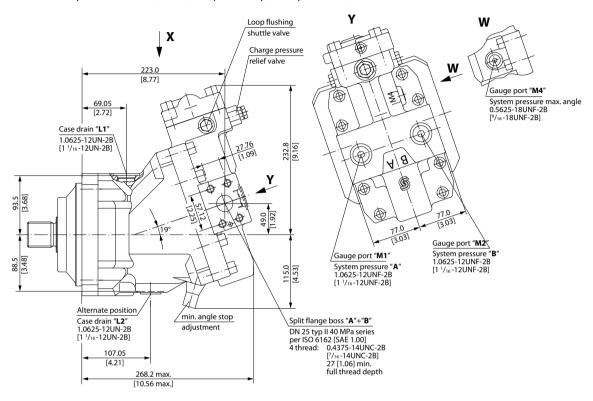
51V110 Proportional and Two-Position Control, HZB1 (Side port on top, Axial port below)

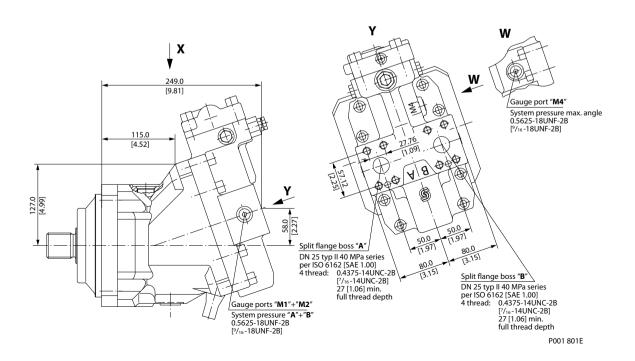
Shaft Options - 51V110-1 and 51V110

Shaft spline data - mm [in]

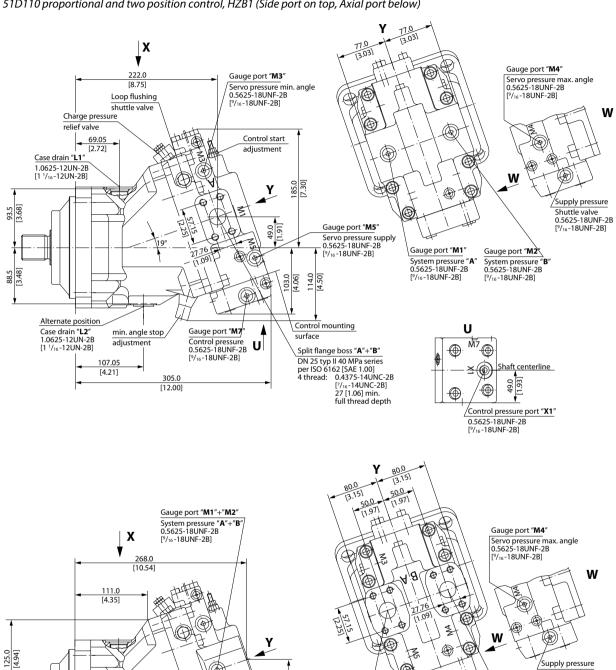
Shaft option	F1	C8		
Number of teeth	13	27		
Pitch	8/16	16/32		
Pitch Ø	41.275 [1.625]	42.862 [1.688]		
ØA	43.64 [1.72]	43.96 [1.73]		
ØD	36.0 [1.42]	39.60 [1.56]		
Pressure angle	30°			
В	55.0 [2.17]			
С	67.0±0.5 [2.64]			
Е	69.8±1.1 [2.75]			
F	75.40±0.7 [2.97]			
Н	28.0 [1.1]			
Spline	ANSI B92.1-1970, class 5, flat root side fit			
ØG	0.625-11UNC-2B [5/8-11UNC-2B]; allowed torque in thread max. 200 N·m [1770 lbf•in]			

Flow into port **A** results in **CW** rotation of output shaft.


Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

DIN flange design per ISO 3019/2

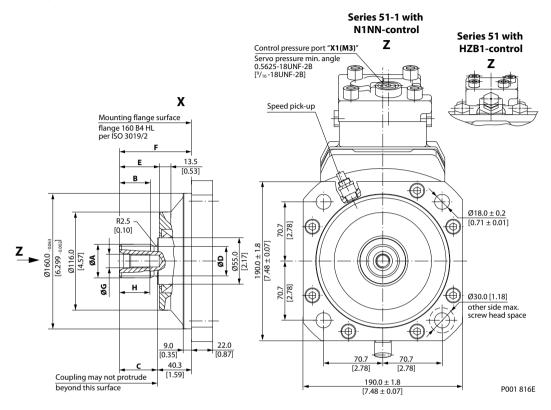

51D110-1 two position control, N1NN (Side port on top, Axial port below)

51D110 proportional and two position control, HZB1 (Side port on top, Axial port below)

Split flange boss "A"

DN 25 typ || 40 MPa series per ISO 6162 [SAE 1.00] 4 thread: 0.4375-14UNC-2B [7/16-14UNC-2B] 27 [1.06] min. full thread depth

Supply pressure Shuttle valve 0.5625-18UNF-2B [9/16-18UNF-2B]


P001 802E

Split flange boss "B"

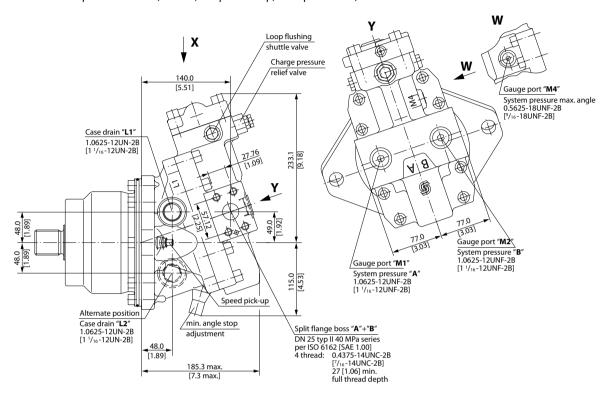
DN 25 typ II 40 MPa series per ISO 6162 [SAE 1.00] 4 thread: 0.4375-14UNC-2B [7/₁₆-14UNC-2B] 27 [1.06] min. full thread depth

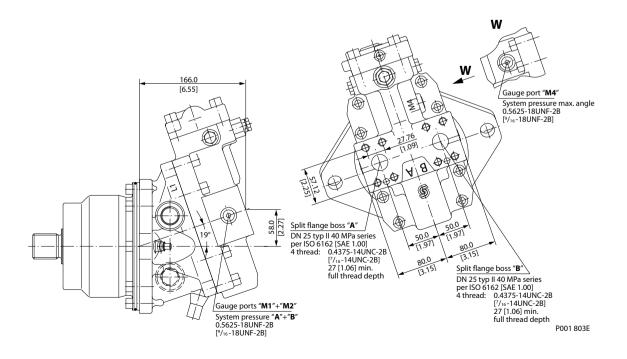
Shaft options - 51D110-1 and 51D110

Shaft spline data - mm [in]

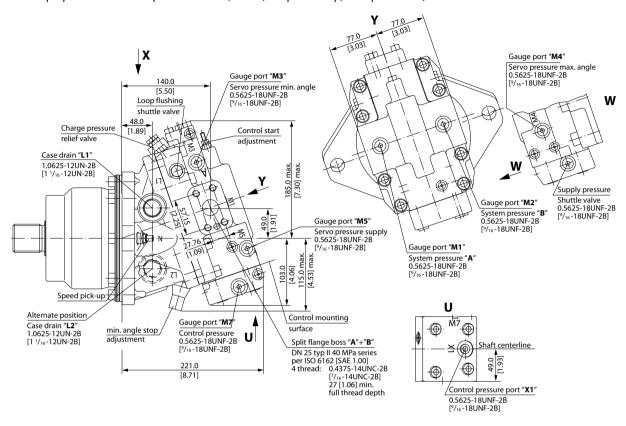
Shaft option	D3	D4	
Number of teeth	18	21	
Spline	W40x2x30x18x9g side fit DIN 5480	W45x2x30x21x9g side fit DIN 5480	
Pitch Ø	36.0 [1.417]	42.0 [1.654]	
Ø A	39.6 [1.56]	44.6 [1.76]	
В	37.0 [1.46]	42.0 [1.65]	
С	45.0±0.5 [1.77]	50.0±0.5 [1.97]	
ØD	35.0 [1.38]	40.0 [1.57]	
E	47.3±1.1 [1.86]	52.3±1.1 [2.06]	
F	85.3±0.6 [3.36]	90.3±0.6 [3.56]	
Н	30.0 [1.18] 30.0 [1.18]		
ØG	M12x1.75 allowed torque in thread max. 115 N·m [1018 lbf·in]		

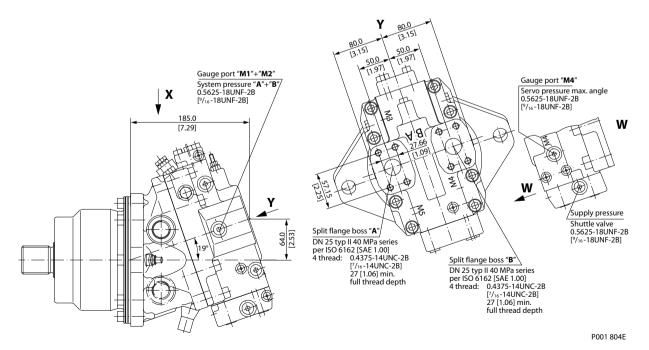
Flow into port \boldsymbol{A} results in \boldsymbol{CW} rotation of output shaft.

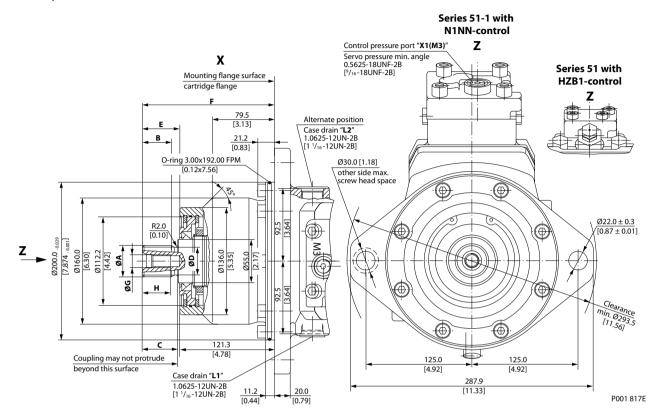

Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

Cartridge flange


51C110-1 two-position control, N1NN (Side port on top, Axial port below)



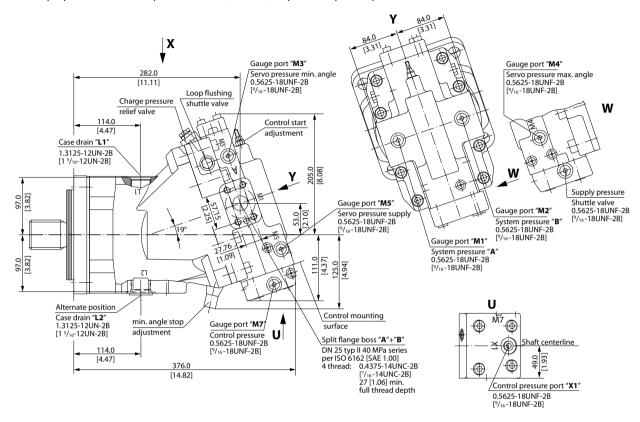

51C110 proportional and two-position control, HZB1 (Side port on top, Axial port below)

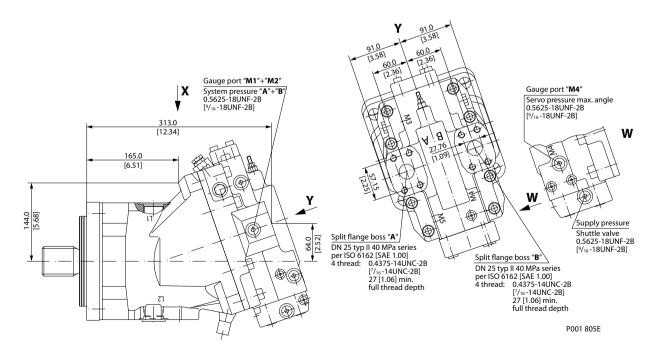
Shaft options - 51C110-1 and 51C110

Shaft spline data - mm [in]

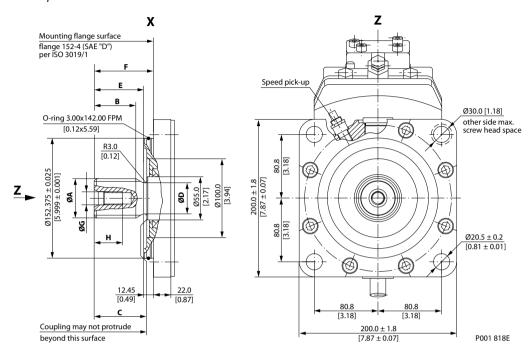
Shaft option	D3	D4	
Number of teeth	18	21	
Spline	W40x2x30x18x9g side fit DIN 5480	W45x2x30x21x9g side fit DIN 5480	
Pitch Ø	36.0 [1.417]	42.0 [1.654]	
ØA	39.6 [1.56]	44.6 [1.76]	
В	37.0 [1.46]	42.0 [1.65]	
С	45.0±0.5 [1.77]	50.0±0.5 [1.97]	
ØD	35.0 [1.38]	40.0 [1.57]	
Е	47.4±1.1 [1.87]	52.4±1.4 [2.06]	
F	167.7±0.6 [6.6]	172.7±0.6 [6.8]	
Н	30.0 [1.18] 30.0 [1.18]		
ØG	M12x1.75 allowed torque in thread max. 115 N·m [1018 lbf·in]		

Flow into port ${\bf A}$ results in ${\bf CW}$ rotation of output shaft.


Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

SAE flange design per ISO 3019/1

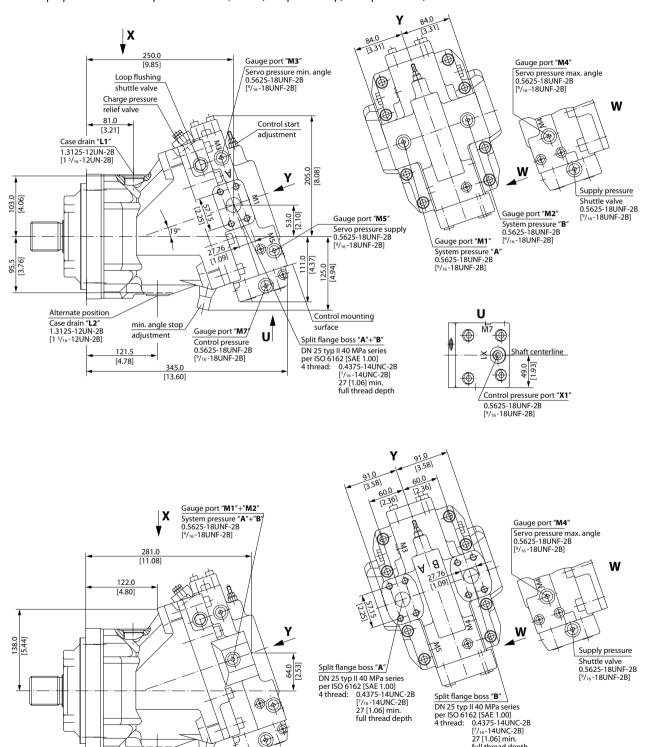

51V160 proportional and two-position control, HZB1 (Side port on top, Axial port below)

Shaft options – 51V160

Shaft spline data - mm [in]

Shaft option	F1 F2		C8		
Number of teeth	13	15	27		
Pitch	8/16	8/16	16/32		
Pitch Ø	41.275 [1.625]	47.625 [1.875]	42.862 [1.688]		
ØA	43.64 [1.72]	49.99 [1.97]	43.96 [1.73]		
В	55.0 [2.17]	53.0 [2.09]	55.0 [2.17]		
ØD	36.0 [1.42] 42.20 [1.66]		39.60 [1.56]		
Pressure angle	30°				
С	67.0±0.5 [2.64]				
E	70.0±1.1 [2.76]				
F	75.40±0.7 [2.97]				
Н	36.0 [1.42]				
Spline	ANSI B92.1-1970, class 5, flat root side fit				
ØG	0.625-11UNC-2B [5/8-11UNC-2B]; allowed torque in thread max. 200 N•m [1770 lbf•in]				

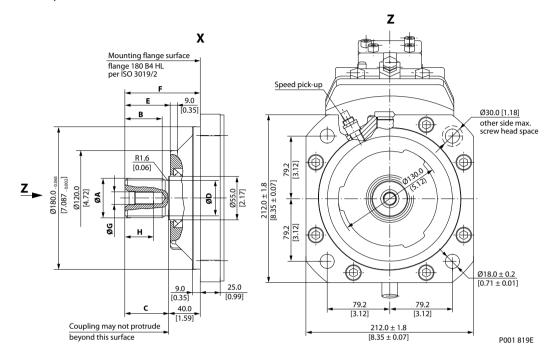
Flow into port **A** results in **CW** rotation of output shaft.


Flow into port ${\bf B}$ results in ${\bf CCW}$ rotation of output shaft.

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

DIN flange design per ISO 3019/2

51D160 proportional and two-position control, HZB1 (Side port on top, Axial port below)



P001 806E

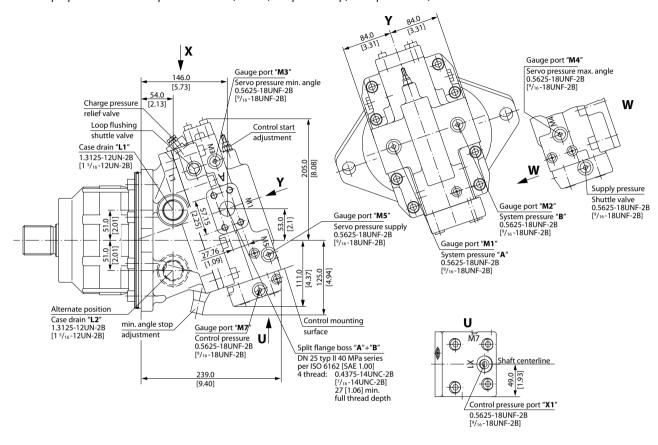
full thread depth

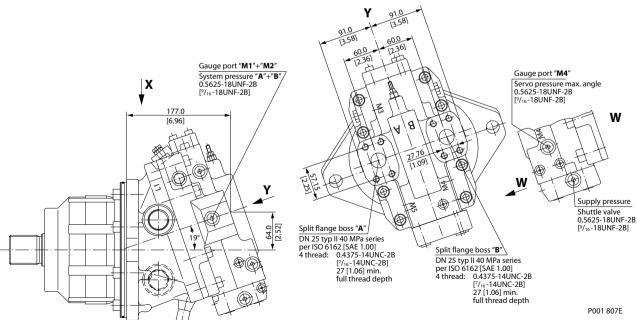
Shaft options - 51D160

Shaft spline data - mm [in]

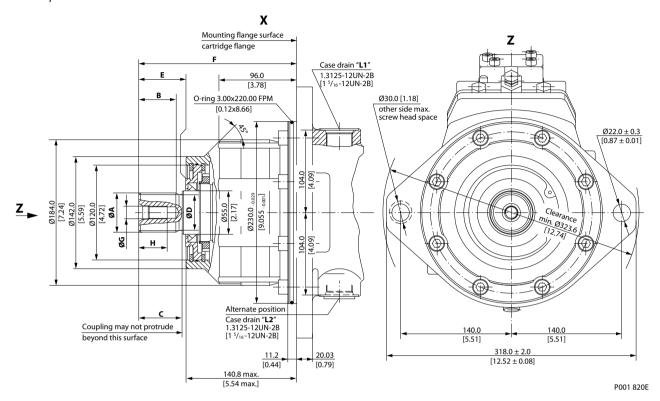
Shaft option	D4	D5	
Number of teeth	21	24	
Spline	W45x2x30x21x9g side fit DIN 5480	W50x2x30x24x9g side fit DIN 5480	
Pitch Ø	42.0 [1.654]	48.0 [1.890]	
ØA	44.6 [1.76]	49.6 [1.95]	
В	42.0 [1.65]	47.0 [1.85]	
С	50.0±0.5 [1.97]	55.0±0.5 [2.17]	
ØD	40.0 [1.57]	45.0 [1.77]	
E	52.3±1.1 [2.06]	57.3±1.1 [2.26]	
F	90.3±0.6 [3.56]	95.3±0.6 [3.75]	
Н	30.0 [1.18] 30.0 [1.18]		
ØG	M12x1.75 allowed torque in thread max. 115 N·m [1018 lbf·in]		

Flow into port **A** results in **CW** rotation of output shaft.


Flow into port **B** results in **CCW** rotation of output shaft.


Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

Cartridge flange

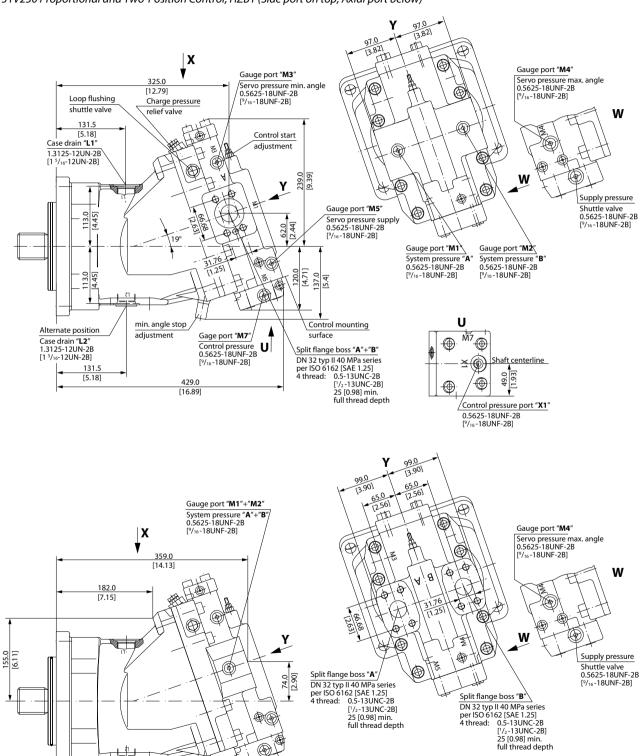

51C160 proportional and two-position control, HZB1 (Side port on top, Axial port below)

Shaft options - 51C160

Shaft spline data - mm [in]

Shaft option	D4	D5	
Number of teeth	21	24	
Spline	W45x2x30x21x9g side fit DIN 5480	W50x2x30x24x9g side fit DIN 5480	
Pitch Ø	42.0 [1.654]	48.0 [1.890]	
ØA	44.6 [1.76]	49.6 [1.95]	
В	42.0 [1.65]	47.0 [1.85]	
С	50.0±0.5 [1.97]	55.0±0.5 [2.17]	
ØD	40.0 [1.57]	45.0 [1.77]	
Е	54.5±1.4 [2.15]	59.5±1.4 [2.34]	
F	194.9±0.6 [7.67]	199.9±0.6 [7.87]	
Н	30.0 [1.18] 30.0 [1.18]		
ØG	M12x1.75 allowed torque in thread max. 115 N·m [1018 lbf·in]		

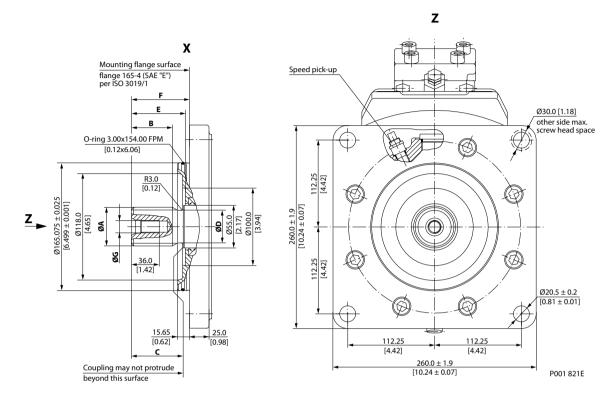
Flow into port **A** results in **CW** rotation of output shaft.


Flow into port ${\bf B}$ results in ${\bf CCW}$ rotation of output shaft.

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

SAE flange design per ISO 3019/1

51V250 Proportional and Two-Position Control, HZB1 (Side port on top, Axial port below)



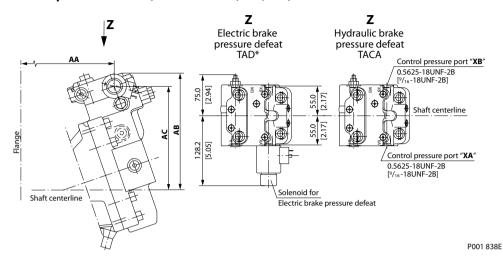
25 [0 98] min full thread depth

P001 808E

Shaft Options - 51V250

Shaft spline data - mm [in]

Shaft option	F2		C8		
Number of teeth	15		27		
Pitch	8/16		16/32		
Pitch Ø	47.625 [1.875]		42.862 [1.688]		
ØA	49.99 [1.97]		43.96 [1.73]		
В	53.0 [2.09]		55.0 [2.17]		
ØD	42.20 [1.66]	42.20 [1.66] 39.60 [1.56]			
Pressure angle	30°				
С	67.0 ±0.5 [2.64]				
Е	70.0 ±1.1 [2.76]				
F		75.4 ±0.7 [2.97]			
Н	36.0 [1.42]				
Spline	ANSI B92.1-1970, class 5, flat root side fit				
ØG	0.625-11UNC-2B [5/8-11UNC-2B]; allowed torque in thread max. 200 N•m [1770 lbf•in]				


Flow into port **A** results in **CW** rotation of output shaft.

Flow into port **B** results in **CCW** rotation of output shaft.

Shaft rotation is determined by viewing from shaft end. Ports with O-ring seal and inch threads shall be in accordance with ISO 11926/1.

Options TA** for 51-1 – Pressure Compensator Control (Frame Size: 060, 080, 110)

Control TA** for 51-1 - mm [in]

Frame	060		060 080		110				
Design	v	D	С	v	D	С	v	D	С
AA	181.2 [7.13]	156.7 [6.17]	96.9 [3.82]	196.9 [7.75]	172.9 [6.81]	94.5 [3.72]	213.4 [8.40]	181.8 [7.16]	99.0 [3.90]
AB		199.3 [7.85]	209.7 [8.26]		223.5	[8.80]	223.9 [8.82]	
AC		176.4 [6.95]		186.8 [7.36]		200.6	[7.90]	201.0 [7.91]	

V = SAE-flange

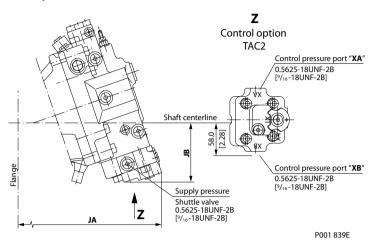
D = DIN-flange

C = Cartridge flange

Solenoid connectors

Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: 514117

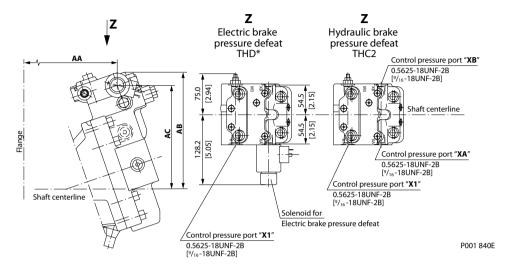

AMP Junior Timer two pin (Supplied) Mating connector No.: K19815

ld. No.: **508388**

Options TA** for 51 – Pressure Compensator Control (Frame Size: 160, 250)

Control TA** for 51 - mm [in]

Frame	160			250		
Design	V	D	С	v	D	С
JA	393 [15.48]	361 [14.22]	257 [10.11]	445 [17.51]	-	_
JB	114 [4.48]			122 [4.82]	-	_


V = SAE-flange

D = DIN-flange

C = Cartridge flange

Options TH** for 51-1 – Hydraulic Two-Position Control (Frame Size: 060, 080, 110)

Control TA** for 51-1 - mm [in]

Frame		060			080		110			
Design	v	D	С	v	D	С	v	D	С	
AA	181.2 [7.13]	156.7 [6.17]	96.9 [3.82]	196.9 [7.75]	172.9 [6.81]	94.5 [3.72]	213.4 [8.40]	181.8 [7.16]	99.0 [3.90]	
AB		199.3 [7.85	[]		209.7 [8.26]]	223.5	[8.80]	223.9 [8.82]	
AC		176.4 [6.95	·]		186.8 [7.36]]	200.6	[7.90]	201.0 [7.91]	

V = SAE-flange

D = DIN-flange

C = Cartridge flange

Solenoid connectors

Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: **514117**

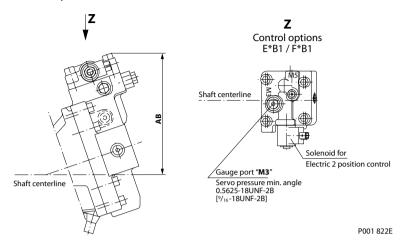

AMP Junior Timer two pin (Supplied) Mating connector No.: K19815

ld. No.: **508388**

Options TH** for 51 – Hydraulic Two-Position Control (Frame Size: 160, 250)

Control TA** for 51 - mm [in]

Frame size		160			250	
Design	v	D	С	V	D	С
JA	393 [15.48]	361 [14.22]	257 [10.11]	445 [17.51]	-	_
JB		114 [4.48]		122 [4.82]	-	_


V = SAE-flange

D = DIN-flange

C = Cartridge flange

Options E*B1, F*B1 for 51-1 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)

Control E1B1, E2B1, E7B1, F1B1, F2B1 for 51-1 - mm [in]

Frame		060			080		110			
Design	V	D	С	v	D	С	V	D	С	
AB	208.5 [8.21]				218.9 [8.62]		232.7 [9.16]			

V = SAE-flange

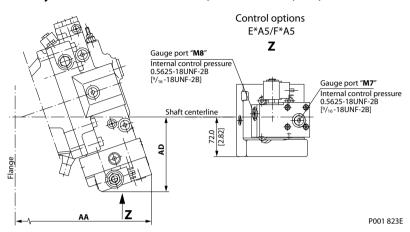
D = DIN-flange

C = Cartridge flange

Solenoid connectors

Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: 514117


AMP Junior Timer two pin (Supplied) Mating connector No.: K19815

ld. No.: **508388**

Options E*A5, F*A5 for 51 - Electrohydraulic Two-Position Control (Frame Size: 160, 250)

Control E1A5, E2A5, F1A5, F2A5 for 51 - mm [in]

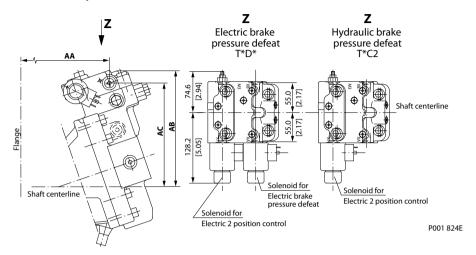
Frame size		160			250	
Design	v	D	С	v	D	С
AA	401 [15.79]	369 [14.53]	265 [10.42]	453 [17.82]	-	_
AD		145 [5.72]		154 [6.06]	-	-

V = SAE-flange

D = DIN-flange

C = Cartridge flange

Solenoid connector


Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: **514117**

Options T1**, T2**, T7** for 51-1 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)

Control T1**, T2**, T7** for 51-1 - mm [in]

Frame		060			080		110			
Design	v	D	С	v	D	С	v	D	С	
AA	181.2 [7.13]	156.7 [6.17]	96.9 [3.82]	196.9 [7.75]	172.9 [6.81]	94.5 [3.72]	213.4 [8.40]	181.8 [7.16]	99.0 [3.90]	
AB		199.3 [7.85]			209.7 [8.26]		223.5	[8.80]	223.9 [8.82]	
AC	176.4 [6.95]				186.8 [7.36]		200.6	[7.90]	201.0 [7.91]	

V = SAE-flange

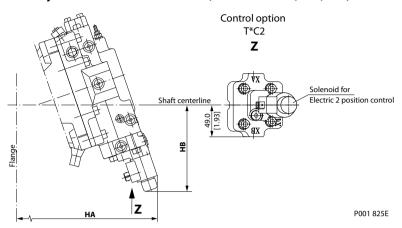
D = DIN-flange

C = Cartridge flange

Solenoid connectors

Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: **514117**


AMP Junior Timer two pin (Supplied) Mating connector No.: K19815

ld. No.: **508388**

Options T1C2, T2C2 for 51 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)

Control T1C2, T2C2 for 51 - mm [in]

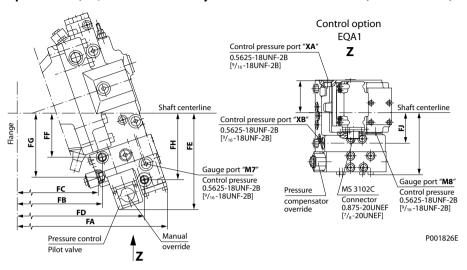
Frame size		160			250	
Design	v	D	С	v	D	С
НА	409 [16.10]	377 [14.84]	272 [10.73]	461 [18.13]	-	-
НВ		178 [7.0]		186 [7.33]	-	-

V = SAE-flange

D = DIN-flange

C = Cartridge flange

Solenoid connector


Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: 514117

Options EPA1, EQA1 for 51 - Electrohydraulic Two-Position Control (All Frame Sizes)

Control EPA1, EQA1 for 51 - mm [in]

Frame		060			080			110			160		25	0	
Design	V	D	С	V	D	С	V	D	С	v	D	С	v	D	С
FA	327 [12.89]	303 [11.93]	243 [9.57]	351 [13.81]	327 [12.87]	249 [9.78]	369 [14.54]	337 [13.28]	255 [10.04]	409 [16.11]	377 [14.85]	273 [10.73]	461 [18.31]		-
FB	210 [8.26]	185 [7.29]	125 [4.94]	233 [9.18]	209 [8.23]	131 [5.15]	252 [9.90]	220 [8.65]	137 [5.40]	283 [11.14]	251 [9.88]	146 [5.76]	334 [13.17]		-
FC	203 [8.00]	179 [7.04]	119 [4.69]	226 [8.88]	202 [7.94]	123 [4.85]	244 [9.61]	212 [8.35]	130 [5.11]	276 [10.85]	244 [9.59]	139 [5.48]	327 [12.88]		-
FD	286 [11.25]	261 [10.29]	202 [7.93]	309 [12.17]	285 [11.32]	207 [8.14]	328 [12.90]	296 [11.64]	213 [8.40]	367 [14.47]	335 [13.21]	231 [9.09]	419 [16.50]		-
FE		168 [6.62]	İ		174 [6.85]		176 [6.91]			183 [7.22]			192 [7.56]		-
FF		74 [2.91]			80 [3.15]			81 [3.20]		92 [3.63]			101 [3.97]		-
FG	110 [4.33] 11		116 [4.58]			118 [4.64]]	129 [5.06]			137 [5.41]		-		
FH		114 [4.47]			120 [4.74]			122 [4.80]]		130 [5.11]		138 [5.45]		-
FJ		56 [2.20]			56 [2.20]			56 [2.20]			57 [2.22]		57 [2.22]		-

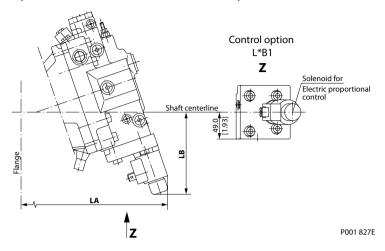
V = SAE-flange; D = DIN-flange; C = Cartridge flange

Solenoid connectors

MS Connector MS3102C-14S-2P (Supplied Connector)

Mating Connector No.: K08106 Id.-No.: 615062

Packard Weather-Pack 4 pin (Supplied Connector)


Mating Connector No.: K03384 Id.-No.: 712208

^{- =} not available

Options L1B1, L2B1, L7B1 for 51 – Electrohydraulic Two-Position Control (All Frame Sizes)

Control L1B1, L2B1, L7B1 for 51 - mm [in]

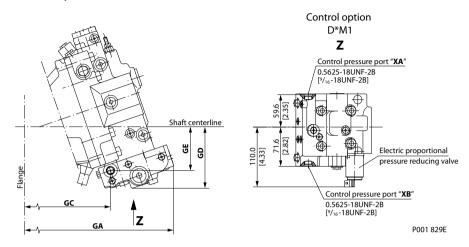
Frame		060			080			110		160			250			
Design	V	D	С	v	D	С	٧	D	С	V	D	С	V	D	С	
LA	321 296 236 [12.63] [11.66] [9.31]						242 [9.52]	363 [14.28]	331 [13.02]	248 [9.77]	402 [15.84]	370 [14.58]	266 [10.47]	454 [17.87]		_
LB	144 [5.66]		144 [5.66] 150 [5.90]		151 [5.96]				168 [6.61]		_					

V = SAE-flange; D = DIN-flange; C = Cartridge flange

Solenoid connectors

Plug face DIN 46350 (Supplied) Mating connector No.: K09129 Id. No.: **514117**

A B


AMP Junior Timer two pin (Supplied) Mating connector No.: K19815

ld. No.: **508388**

Options D7M1, D8M1 for 51 – Electrohydraulic Two-Position Control (Frame Size: 060, 080, 110)

Control D7M1, D8M1 for 51 - mm [in]

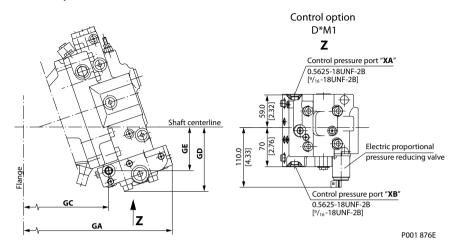
Size		060			080		110			
Design	v	D	С	v	D	С	v	D	С	
GA	325 301 241 [12.80] [11.84] [9.49]		349 325 246 [13.73] [12.80] [9.70]			367 [14.64]	335 [13.20]	253 [9.95]		
GC	210 [8.26] 185 [7.29] 125 [4.94]		233 [9.18]	209 [8.23]	131 [5.15]	252 [9.91] 220 [8.65] 137 [5.40]				
GD	106 [4.19]				112 [4.42]			114 [4.48]	•	
GE	74 [2.91]			80 [3.15]			81 [3.20]			

V = SAE-flange

D = DIN-flange

C = Cartridge flange

Solenoid connector


Plug face DIN 46350 (Supplied) Mating connector No.: K09129

ld. No.: **514117**

Options D7M1, D8M1 for 51 – Electrohydraulic Two-Position Control (Frame Size: 160, 250)

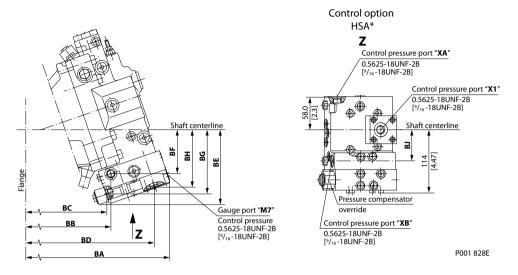
Control D7M1, D8M1 for 51 - mm [in]

Frame size		160			250	
Design	v	D	С	v	D	С
GA	407 [16.02]	375 [14.76]	270 [10.65]	459 [18.05]		_
GC	283 [11.14]	251 [9.88]	146 [5.76]	334 [13.17]		-
GD		133 [5.22]	141 [5.55]		-	
GE		92 [3.63]	101 [3.97]		_	

V = SAE-flange, D = DIN-flange, C = Cartridge flange

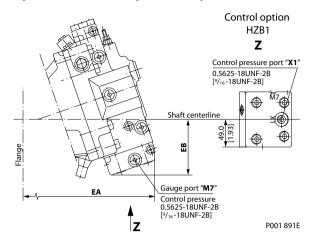
Solenoid connector

Plug face DIN 46350 (Supplied) Mating connector No.: K09129


ld. No.: **514117**

^{– =} not available

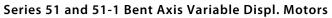
Option HSA* for 51 – Hydraulic Proportional Control (All Frame Sizes)


Control HSA* for 51 - mm [in]

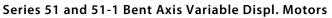
Size		060			080			110			160		:	250	
Design	v	D	С	V	D	С	v	D	С	v	D	С	V	D	c
ВА	316 [12.45]	292 [11.49]	232 [9.13]	340 [13.37]	316 [12.34]	237 [9.34]	358 [14.10]	326 [12.84]	244 [9.60]	398 [15.66]	366 [14.40]	261 [10.29]	449 [17.70]		-
ВВ	210 [8.26]	185 [7.29]	125 [4.94]	233 [9.18]	209 [8.23]	131 [5.15]	252 [9.90]	220 [8.65]	137 [5.40]	283 [11.14]	251 [9.88]	146 [5.76]	334 [13.17]		
ВС	203 [8.00]	[8.00] [7.04] [4.69]		226 [8.88]	202 [7.94]	123 [4.85]	244 [9.61]	212 [8.35]	130 [5.11]	276 [10.85]	244 [9.59]	139 [5.48]	327 [12.88]		_
BD	288 [11.35]	264 [10.38]	204 [8.03]	312 [12.27]	288 [11.35]	209 [8.24]	330 [12.99]	298 [11.74]	216 [8.49]	370 [14.56]	338 [13.30]	233 [9.18]	421 [16.59]		-
BE		130 [5.12]]	136 [5.35]				137 [5.41]]		145 [5.72]	İ	154 [6.06]		-
BF		74 [2.91]		80 [3.15]			81 [3.20]			92 [3.63]			101 [3.97]		-
BG	110 [4.33]]	116 [4.58]		118 [4.64]		129 [5.06			137 [5.41]		-		
ВН		98 [3.87]			104 [4.10]	l		106 [4.16]]		114 [4.47]		122 [4.81]		-
BJ		56 [2.20]			56 [2.20]			56 [2.20]			57 [2.22]		57 [2.22]		_

V = SAE-flange; D = DIN-flange; C = Cartridge flange; - = not available

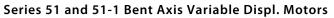
Option HZB1 for 51 - Hydraulic Proportional Control (All Frame Sizes)



Control HZB1 for 51 - mm [in]


Size		060			080			110			160		2	50	
Design	v	D	С	v	D	С	٧	D	С	٧	D	С	v	D	С
EA	294 [11.56]	270.0 [10.64]	209 [8.24]	318.0 [12.52]	294.0 [11.58]	215 [8.45]	337.0 [13.25]	305.0 [12.00]	221 [8.71]	376.0 [14.82]	345.0 [13.60]	239 [9.40]	429.0 [16.89]		_
ЕВ	96 [3.77]		77] 102 [4.0]			103 [4.06]			111 [4.37]			120 [4.71]		_	

V = SAE-flange; D = DIN-flange; C = Cartridge flange


^{- =} not available

Products we offer:

- · Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hvdraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- Open Circuit Axial Piston Pumps
- Orbital Motors
- PLUS+1° GUIDE
- Proportional Valves
- Sensors
- Steering
- Transit Mixer Drives

Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss - Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss. We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.

Comatrol

www.comatrol.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

Local address:

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35

D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 3418 5200

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.